Database
BASIC ORDER THEORY
Lattices
Lattices
latmlej11
Next ⟩
latmlej12
Metamath Proof Explorer
Ascii
Unicode
Theorem
latmlej11
Description:
Ordering of a meet and join with a common variable.
(Contributed by
NM
, 4-Oct-2012)
Ref
Expression
Hypotheses
latledi.b
⊢
B
=
Base
K
latledi.l
⊢
≤
˙
=
≤
K
latledi.j
⊢
∨
˙
=
join
⁡
K
latledi.m
⊢
∧
˙
=
meet
⁡
K
Assertion
latmlej11
⊢
K
∈
Lat
∧
X
∈
B
∧
Y
∈
B
∧
Z
∈
B
→
X
∧
˙
Y
≤
˙
X
∨
˙
Z
Proof
Step
Hyp
Ref
Expression
1
latledi.b
⊢
B
=
Base
K
2
latledi.l
⊢
≤
˙
=
≤
K
3
latledi.j
⊢
∨
˙
=
join
⁡
K
4
latledi.m
⊢
∧
˙
=
meet
⁡
K
5
simpl
⊢
K
∈
Lat
∧
X
∈
B
∧
Y
∈
B
∧
Z
∈
B
→
K
∈
Lat
6
1
4
latmcl
⊢
K
∈
Lat
∧
X
∈
B
∧
Y
∈
B
→
X
∧
˙
Y
∈
B
7
6
3adant3r3
⊢
K
∈
Lat
∧
X
∈
B
∧
Y
∈
B
∧
Z
∈
B
→
X
∧
˙
Y
∈
B
8
simpr1
⊢
K
∈
Lat
∧
X
∈
B
∧
Y
∈
B
∧
Z
∈
B
→
X
∈
B
9
1
3
latjcl
⊢
K
∈
Lat
∧
X
∈
B
∧
Z
∈
B
→
X
∨
˙
Z
∈
B
10
9
3adant3r2
⊢
K
∈
Lat
∧
X
∈
B
∧
Y
∈
B
∧
Z
∈
B
→
X
∨
˙
Z
∈
B
11
1
2
4
latmle1
⊢
K
∈
Lat
∧
X
∈
B
∧
Y
∈
B
→
X
∧
˙
Y
≤
˙
X
12
11
3adant3r3
⊢
K
∈
Lat
∧
X
∈
B
∧
Y
∈
B
∧
Z
∈
B
→
X
∧
˙
Y
≤
˙
X
13
1
2
3
latlej1
⊢
K
∈
Lat
∧
X
∈
B
∧
Z
∈
B
→
X
≤
˙
X
∨
˙
Z
14
13
3adant3r2
⊢
K
∈
Lat
∧
X
∈
B
∧
Y
∈
B
∧
Z
∈
B
→
X
≤
˙
X
∨
˙
Z
15
1
2
5
7
8
10
12
14
lattrd
⊢
K
∈
Lat
∧
X
∈
B
∧
Y
∈
B
∧
Z
∈
B
→
X
∧
˙
Y
≤
˙
X
∨
˙
Z