Metamath Proof Explorer


Theorem latmlej11

Description: Ordering of a meet and join with a common variable. (Contributed by NM, 4-Oct-2012)

Ref Expression
Hypotheses latledi.b B = Base K
latledi.l ˙ = K
latledi.j ˙ = join K
latledi.m ˙ = meet K
Assertion latmlej11 K Lat X B Y B Z B X ˙ Y ˙ X ˙ Z

Proof

Step Hyp Ref Expression
1 latledi.b B = Base K
2 latledi.l ˙ = K
3 latledi.j ˙ = join K
4 latledi.m ˙ = meet K
5 simpl K Lat X B Y B Z B K Lat
6 1 4 latmcl K Lat X B Y B X ˙ Y B
7 6 3adant3r3 K Lat X B Y B Z B X ˙ Y B
8 simpr1 K Lat X B Y B Z B X B
9 1 3 latjcl K Lat X B Z B X ˙ Z B
10 9 3adant3r2 K Lat X B Y B Z B X ˙ Z B
11 1 2 4 latmle1 K Lat X B Y B X ˙ Y ˙ X
12 11 3adant3r3 K Lat X B Y B Z B X ˙ Y ˙ X
13 1 2 3 latlej1 K Lat X B Z B X ˙ X ˙ Z
14 13 3adant3r2 K Lat X B Y B Z B X ˙ X ˙ Z
15 1 2 5 7 8 10 12 14 lattrd K Lat X B Y B Z B X ˙ Y ˙ X ˙ Z