Metamath Proof Explorer


Theorem latmlem2

Description: Add meet to both sides of a lattice ordering. ( sslin analog.) (Contributed by NM, 10-Nov-2011)

Ref Expression
Hypotheses latmle.b B = Base K
latmle.l ˙ = K
latmle.m ˙ = meet K
Assertion latmlem2 K Lat X B Y B Z B X ˙ Y Z ˙ X ˙ Z ˙ Y

Proof

Step Hyp Ref Expression
1 latmle.b B = Base K
2 latmle.l ˙ = K
3 latmle.m ˙ = meet K
4 1 2 3 latmlem1 K Lat X B Y B Z B X ˙ Y X ˙ Z ˙ Y ˙ Z
5 1 3 latmcom K Lat X B Z B X ˙ Z = Z ˙ X
6 5 3adant3r2 K Lat X B Y B Z B X ˙ Z = Z ˙ X
7 1 3 latmcom K Lat Y B Z B Y ˙ Z = Z ˙ Y
8 7 3adant3r1 K Lat X B Y B Z B Y ˙ Z = Z ˙ Y
9 6 8 breq12d K Lat X B Y B Z B X ˙ Z ˙ Y ˙ Z Z ˙ X ˙ Z ˙ Y
10 4 9 sylibd K Lat X B Y B Z B X ˙ Y Z ˙ X ˙ Z ˙ Y