Metamath Proof Explorer


Theorem latnlej1l

Description: An idiom to express that a lattice element differs from two others. (Contributed by NM, 19-Jul-2012)

Ref Expression
Hypotheses latlej.b B = Base K
latlej.l ˙ = K
latlej.j ˙ = join K
Assertion latnlej1l K Lat X B Y B Z B ¬ X ˙ Y ˙ Z X Y

Proof

Step Hyp Ref Expression
1 latlej.b B = Base K
2 latlej.l ˙ = K
3 latlej.j ˙ = join K
4 1 2 3 latnlej K Lat X B Y B Z B ¬ X ˙ Y ˙ Z X Y X Z
5 4 simpld K Lat X B Y B Z B ¬ X ˙ Y ˙ Z X Y