Metamath Proof Explorer


Theorem latnlej2l

Description: An idiom to express that a lattice element differs from two others. (Contributed by NM, 19-Jul-2012)

Ref Expression
Hypotheses latlej.b B=BaseK
latlej.l ˙=K
latlej.j ˙=joinK
Assertion latnlej2l KLatXBYBZB¬X˙Y˙Z¬X˙Y

Proof

Step Hyp Ref Expression
1 latlej.b B=BaseK
2 latlej.l ˙=K
3 latlej.j ˙=joinK
4 1 2 3 latnlej2 KLatXBYBZB¬X˙Y˙Z¬X˙Y¬X˙Z
5 4 simpld KLatXBYBZB¬X˙Y˙Z¬X˙Y