Metamath Proof Explorer


Theorem latnlej2l

Description: An idiom to express that a lattice element differs from two others. (Contributed by NM, 19-Jul-2012)

Ref Expression
Hypotheses latlej.b B = Base K
latlej.l ˙ = K
latlej.j ˙ = join K
Assertion latnlej2l K Lat X B Y B Z B ¬ X ˙ Y ˙ Z ¬ X ˙ Y

Proof

Step Hyp Ref Expression
1 latlej.b B = Base K
2 latlej.l ˙ = K
3 latlej.j ˙ = join K
4 1 2 3 latnlej2 K Lat X B Y B Z B ¬ X ˙ Y ˙ Z ¬ X ˙ Y ¬ X ˙ Z
5 4 simpld K Lat X B Y B Z B ¬ X ˙ Y ˙ Z ¬ X ˙ Y