Metamath Proof Explorer


Theorem latnlemlt

Description: Negation of "less than or equal to" expressed in terms of meet and less-than. ( nssinpss analog.) (Contributed by NM, 5-Feb-2012)

Ref Expression
Hypotheses latnlemlt.b B = Base K
latnlemlt.l ˙ = K
latnlemlt.s < ˙ = < K
latnlemlt.m ˙ = meet K
Assertion latnlemlt K Lat X B Y B ¬ X ˙ Y X ˙ Y < ˙ X

Proof

Step Hyp Ref Expression
1 latnlemlt.b B = Base K
2 latnlemlt.l ˙ = K
3 latnlemlt.s < ˙ = < K
4 latnlemlt.m ˙ = meet K
5 1 2 4 latmle1 K Lat X B Y B X ˙ Y ˙ X
6 5 biantrurd K Lat X B Y B X ˙ Y X X ˙ Y ˙ X X ˙ Y X
7 1 2 4 latleeqm1 K Lat X B Y B X ˙ Y X ˙ Y = X
8 7 necon3bbid K Lat X B Y B ¬ X ˙ Y X ˙ Y X
9 simp1 K Lat X B Y B K Lat
10 1 4 latmcl K Lat X B Y B X ˙ Y B
11 simp2 K Lat X B Y B X B
12 2 3 pltval K Lat X ˙ Y B X B X ˙ Y < ˙ X X ˙ Y ˙ X X ˙ Y X
13 9 10 11 12 syl3anc K Lat X B Y B X ˙ Y < ˙ X X ˙ Y ˙ X X ˙ Y X
14 6 8 13 3bitr4d K Lat X B Y B ¬ X ˙ Y X ˙ Y < ˙ X