Metamath Proof Explorer


Theorem latref

Description: A lattice ordering is reflexive. ( ssid analog.) (Contributed by NM, 8-Oct-2011)

Ref Expression
Hypotheses latref.b B = Base K
latref.l ˙ = K
Assertion latref K Lat X B X ˙ X

Proof

Step Hyp Ref Expression
1 latref.b B = Base K
2 latref.l ˙ = K
3 latpos K Lat K Poset
4 1 2 posref K Poset X B X ˙ X
5 3 4 sylan K Lat X B X ˙ X