Metamath Proof Explorer
Description: A lattice ordering is reflexive. ( ssid analog.) (Contributed by NM, 8-Oct-2011)
|
|
Ref |
Expression |
|
Hypotheses |
latref.b |
|
|
|
latref.l |
|
|
Assertion |
latref |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
latref.b |
|
| 2 |
|
latref.l |
|
| 3 |
|
latpos |
|
| 4 |
1 2
|
posref |
|
| 5 |
3 4
|
sylan |
|