Metamath Proof Explorer


Theorem lautcnv

Description: The converse of a lattice automorphism is a lattice automorphism. (Contributed by NM, 10-May-2013)

Ref Expression
Hypothesis lautcnv.i I = LAut K
Assertion lautcnv K V F I F -1 I

Proof

Step Hyp Ref Expression
1 lautcnv.i I = LAut K
2 eqid Base K = Base K
3 2 1 laut1o K V F I F : Base K 1-1 onto Base K
4 f1ocnv F : Base K 1-1 onto Base K F -1 : Base K 1-1 onto Base K
5 3 4 syl K V F I F -1 : Base K 1-1 onto Base K
6 eqid K = K
7 2 6 1 lautcnvle K V F I x Base K y Base K x K y F -1 x K F -1 y
8 7 ralrimivva K V F I x Base K y Base K x K y F -1 x K F -1 y
9 2 6 1 islaut K V F -1 I F -1 : Base K 1-1 onto Base K x Base K y Base K x K y F -1 x K F -1 y
10 9 adantr K V F I F -1 I F -1 : Base K 1-1 onto Base K x Base K y Base K x K y F -1 x K F -1 y
11 5 8 10 mpbir2and K V F I F -1 I