Metamath Proof Explorer


Theorem lautcnvclN

Description: Reverse closure of a lattice automorphism. (Contributed by NM, 25-May-2012) (New usage is discouraged.)

Ref Expression
Hypotheses laut1o.b B=BaseK
laut1o.i I=LAutK
Assertion lautcnvclN KVFIXBF-1XB

Proof

Step Hyp Ref Expression
1 laut1o.b B=BaseK
2 laut1o.i I=LAutK
3 1 2 laut1o KVFIF:B1-1 ontoB
4 f1ocnvdm F:B1-1 ontoBXBF-1XB
5 3 4 sylan KVFIXBF-1XB