Metamath Proof Explorer


Theorem lauteq

Description: A lattice automorphism argument is equal to its value if all atoms are equal to their values. (Contributed by NM, 24-May-2012)

Ref Expression
Hypotheses lauteq.b B = Base K
lauteq.a A = Atoms K
lauteq.i I = LAut K
Assertion lauteq K HL F I X B p A F p = p F X = X

Proof

Step Hyp Ref Expression
1 lauteq.b B = Base K
2 lauteq.a A = Atoms K
3 lauteq.i I = LAut K
4 simpl1 K HL F I X B p A K HL
5 simpl2 K HL F I X B p A F I
6 1 2 atbase p A p B
7 6 adantl K HL F I X B p A p B
8 simpl3 K HL F I X B p A X B
9 eqid K = K
10 1 9 3 lautle K HL F I p B X B p K X F p K F X
11 4 5 7 8 10 syl22anc K HL F I X B p A p K X F p K F X
12 breq1 F p = p F p K F X p K F X
13 11 12 sylan9bb K HL F I X B p A F p = p p K X p K F X
14 13 bicomd K HL F I X B p A F p = p p K F X p K X
15 14 ex K HL F I X B p A F p = p p K F X p K X
16 15 ralimdva K HL F I X B p A F p = p p A p K F X p K X
17 16 imp K HL F I X B p A F p = p p A p K F X p K X
18 simpl1 K HL F I X B p A F p = p K HL
19 simpl2 K HL F I X B p A F p = p F I
20 simpl3 K HL F I X B p A F p = p X B
21 1 3 lautcl K HL F I X B F X B
22 18 19 20 21 syl21anc K HL F I X B p A F p = p F X B
23 1 9 2 hlateq K HL F X B X B p A p K F X p K X F X = X
24 18 22 20 23 syl3anc K HL F I X B p A F p = p p A p K F X p K X F X = X
25 17 24 mpbid K HL F I X B p A F p = p F X = X