Metamath Proof Explorer


Theorem lawcoslem1

Description: Lemma for lawcos . Here we prove the law for a point at the origin and two distinct points U and V, using an expanded version of the signed angle expression on the complex plane. (Contributed by David A. Wheeler, 11-Jun-2015)

Ref Expression
Hypotheses lawcoslem1.1 φ U
lawcoslem1.2 φ V
lawcoslem1.3 φ U 0
lawcoslem1.4 φ V 0
Assertion lawcoslem1 φ U V 2 = U 2 + V 2 - 2 U V U V U V

Proof

Step Hyp Ref Expression
1 lawcoslem1.1 φ U
2 lawcoslem1.2 φ V
3 lawcoslem1.3 φ U 0
4 lawcoslem1.4 φ V 0
5 sqabssub U V U V 2 = U 2 + V 2 - 2 U V
6 1 2 5 syl2anc φ U V 2 = U 2 + V 2 - 2 U V
7 1 2 4 absdivd φ U V = U V
8 7 oveq2d φ U V U V = U V U V
9 8 oveq2d φ U V U V U V = U V U V U V
10 1 abscld φ U
11 2 abscld φ V
12 10 11 remulcld φ U V
13 12 recnd φ U V
14 1 2 4 divcld φ U V
15 14 recld φ U V
16 15 recnd φ U V
17 10 recnd φ U
18 11 recnd φ V
19 2 4 absne0d φ V 0
20 17 18 19 divcld φ U V
21 1 3 absne0d φ U 0
22 17 18 21 19 divne0d φ U V 0
23 13 16 20 22 div12d φ U V U V U V = U V U V U V
24 9 23 eqtrd φ U V U V U V = U V U V U V
25 13 17 18 21 19 divdiv2d φ U V U V = U V V U
26 18 sqvald φ V 2 = V V
27 26 oveq1d φ V 2 U = V V U
28 17 18 18 mul31d φ U V V = V V U
29 27 28 eqtr4d φ V 2 U = U V V
30 29 oveq1d φ V 2 U U = U V V U
31 18 sqcld φ V 2
32 31 17 21 divcan4d φ V 2 U U = V 2
33 25 30 32 3eqtr2rd φ V 2 = U V U V
34 33 oveq2d φ U V V 2 = U V U V U V
35 16 31 mulcomd φ U V V 2 = V 2 U V
36 11 resqcld φ V 2
37 36 14 remul2d φ V 2 U V = V 2 U V
38 35 37 eqtr4d φ U V V 2 = V 2 U V
39 1 31 2 4 div12d φ U V 2 V = V 2 U V
40 31 2 4 divrecd φ V 2 V = V 2 1 V
41 recval V V 0 1 V = V V 2
42 2 4 41 syl2anc φ 1 V = V V 2
43 42 oveq2d φ V 2 1 V = V 2 V V 2
44 2 cjcld φ V
45 sqne0 V V 2 0 V 0
46 18 45 syl φ V 2 0 V 0
47 19 46 mpbird φ V 2 0
48 44 31 47 divcan2d φ V 2 V V 2 = V
49 43 48 eqtrd φ V 2 1 V = V
50 40 49 eqtrd φ V 2 V = V
51 50 oveq2d φ U V 2 V = U V
52 39 51 eqtr3d φ V 2 U V = U V
53 52 fveq2d φ V 2 U V = U V
54 38 53 eqtrd φ U V V 2 = U V
55 24 34 54 3eqtr2rd φ U V = U V U V U V
56 55 oveq2d φ 2 U V = 2 U V U V U V
57 56 oveq2d φ U 2 + V 2 - 2 U V = U 2 + V 2 - 2 U V U V U V
58 6 57 eqtrd φ U V 2 = U 2 + V 2 - 2 U V U V U V