Step |
Hyp |
Ref |
Expression |
1 |
|
lawcoslem1.1 |
|
2 |
|
lawcoslem1.2 |
|
3 |
|
lawcoslem1.3 |
|
4 |
|
lawcoslem1.4 |
|
5 |
|
sqabssub |
|
6 |
1 2 5
|
syl2anc |
|
7 |
1 2 4
|
absdivd |
|
8 |
7
|
oveq2d |
|
9 |
8
|
oveq2d |
|
10 |
1
|
abscld |
|
11 |
2
|
abscld |
|
12 |
10 11
|
remulcld |
|
13 |
12
|
recnd |
|
14 |
1 2 4
|
divcld |
|
15 |
14
|
recld |
|
16 |
15
|
recnd |
|
17 |
10
|
recnd |
|
18 |
11
|
recnd |
|
19 |
2 4
|
absne0d |
|
20 |
17 18 19
|
divcld |
|
21 |
1 3
|
absne0d |
|
22 |
17 18 21 19
|
divne0d |
|
23 |
13 16 20 22
|
div12d |
|
24 |
9 23
|
eqtrd |
|
25 |
13 17 18 21 19
|
divdiv2d |
|
26 |
18
|
sqvald |
|
27 |
26
|
oveq1d |
|
28 |
17 18 18
|
mul31d |
|
29 |
27 28
|
eqtr4d |
|
30 |
29
|
oveq1d |
|
31 |
18
|
sqcld |
|
32 |
31 17 21
|
divcan4d |
|
33 |
25 30 32
|
3eqtr2rd |
|
34 |
33
|
oveq2d |
|
35 |
16 31
|
mulcomd |
|
36 |
11
|
resqcld |
|
37 |
36 14
|
remul2d |
|
38 |
35 37
|
eqtr4d |
|
39 |
1 31 2 4
|
div12d |
|
40 |
31 2 4
|
divrecd |
|
41 |
|
recval |
|
42 |
2 4 41
|
syl2anc |
|
43 |
42
|
oveq2d |
|
44 |
2
|
cjcld |
|
45 |
|
sqne0 |
|
46 |
18 45
|
syl |
|
47 |
19 46
|
mpbird |
|
48 |
44 31 47
|
divcan2d |
|
49 |
43 48
|
eqtrd |
|
50 |
40 49
|
eqtrd |
|
51 |
50
|
oveq2d |
|
52 |
39 51
|
eqtr3d |
|
53 |
52
|
fveq2d |
|
54 |
38 53
|
eqtrd |
|
55 |
24 34 54
|
3eqtr2rd |
|
56 |
55
|
oveq2d |
|
57 |
56
|
oveq2d |
|
58 |
6 57
|
eqtrd |
|