Metamath Proof Explorer


Theorem lbcl

Description: If a set of reals contains a lower bound, it contains a unique lower bound that belongs to the set. (Contributed by NM, 9-Oct-2005) (Revised by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion lbcl S x S y S x y ι x S | y S x y S

Proof

Step Hyp Ref Expression
1 lbreu S x S y S x y ∃! x S y S x y
2 riotacl ∃! x S y S x y ι x S | y S x y S
3 1 2 syl S x S y S x y ι x S | y S x y S