Metamath Proof Explorer


Theorem lbico1

Description: The lower bound belongs to a closed-below, open-above interval. See lbicc2 . (Contributed by FL, 29-May-2014)

Ref Expression
Assertion lbico1 A * B * A < B A A B

Proof

Step Hyp Ref Expression
1 simp1 A * B * A < B A *
2 xrleid A * A A
3 2 3ad2ant1 A * B * A < B A A
4 simp3 A * B * A < B A < B
5 elico1 A * B * A A B A * A A A < B
6 5 3adant3 A * B * A < B A A B A * A A A < B
7 1 3 4 6 mpbir3and A * B * A < B A A B