Metamath Proof Explorer


Theorem lbinfcl

Description: If a set of reals contains a lower bound, it contains its infimum. (Contributed by NM, 11-Oct-2005) (Revised by AV, 4-Sep-2020)

Ref Expression
Assertion lbinfcl S x S y S x y sup S < S

Proof

Step Hyp Ref Expression
1 lbinf S x S y S x y sup S < = ι x S | y S x y
2 lbcl S x S y S x y ι x S | y S x y S
3 1 2 eqeltrd S x S y S x y sup S < S