Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Completeness Axiom and Suprema
lbinfle
Metamath Proof Explorer
Description: If a set of reals contains a lower bound, its infimum is less than or
equal to all members of the set. (Contributed by NM , 11-Oct-2005)
(Revised by AV , 4-Sep-2020)
Ref
Expression
Assertion
lbinfle
⊢ S ⊆ ℝ ∧ ∃ x ∈ S ∀ y ∈ S x ≤ y ∧ A ∈ S → sup S ℝ < ≤ A
Proof
Step
Hyp
Ref
Expression
1
lbinf
⊢ S ⊆ ℝ ∧ ∃ x ∈ S ∀ y ∈ S x ≤ y → sup S ℝ < = ι x ∈ S | ∀ y ∈ S x ≤ y
2
1
3adant3
⊢ S ⊆ ℝ ∧ ∃ x ∈ S ∀ y ∈ S x ≤ y ∧ A ∈ S → sup S ℝ < = ι x ∈ S | ∀ y ∈ S x ≤ y
3
lble
⊢ S ⊆ ℝ ∧ ∃ x ∈ S ∀ y ∈ S x ≤ y ∧ A ∈ S → ι x ∈ S | ∀ y ∈ S x ≤ y ≤ A
4
2 3
eqbrtrd
⊢ S ⊆ ℝ ∧ ∃ x ∈ S ∀ y ∈ S x ≤ y ∧ A ∈ S → sup S ℝ < ≤ A