Metamath Proof Explorer


Theorem lbinfle

Description: If a set of reals contains a lower bound, its infimum is less than or equal to all members of the set. (Contributed by NM, 11-Oct-2005) (Revised by AV, 4-Sep-2020)

Ref Expression
Assertion lbinfle S x S y S x y A S sup S < A

Proof

Step Hyp Ref Expression
1 lbinf S x S y S x y sup S < = ι x S | y S x y
2 1 3adant3 S x S y S x y A S sup S < = ι x S | y S x y
3 lble S x S y S x y A S ι x S | y S x y A
4 2 3 eqbrtrd S x S y S x y A S sup S < A