Database
BASIC ALGEBRAIC STRUCTURES
Left modules
Subspace sum; bases for a left module
lbsel
Next ⟩
lbssp
Metamath Proof Explorer
Ascii
Unicode
Theorem
lbsel
Description:
An element of a basis is a vector.
(Contributed by
Mario Carneiro
, 24-Jun-2014)
Ref
Expression
Hypotheses
lbsss.v
⊢
V
=
Base
W
lbsss.j
⊢
J
=
LBasis
⁡
W
Assertion
lbsel
⊢
B
∈
J
∧
E
∈
B
→
E
∈
V
Proof
Step
Hyp
Ref
Expression
1
lbsss.v
⊢
V
=
Base
W
2
lbsss.j
⊢
J
=
LBasis
⁡
W
3
1
2
lbsss
⊢
B
∈
J
→
B
⊆
V
4
3
sselda
⊢
B
∈
J
∧
E
∈
B
→
E
∈
V