Metamath Proof Explorer


Theorem lbsexg

Description: Every vector space has a basis. This theorem is an AC equivalent; this is the forward implication. (Contributed by Mario Carneiro, 17-May-2015)

Ref Expression
Hypothesis lbsex.j J = LBasis W
Assertion lbsexg CHOICE W LVec J

Proof

Step Hyp Ref Expression
1 lbsex.j J = LBasis W
2 id W LVec W LVec
3 fvex Base W V
4 3 pwex 𝒫 Base W V
5 dfac10 CHOICE dom card = V
6 5 biimpi CHOICE dom card = V
7 4 6 eleqtrrid CHOICE 𝒫 Base W dom card
8 0ss Base W
9 ral0 x ¬ x LSpan W x
10 eqid Base W = Base W
11 eqid LSpan W = LSpan W
12 1 10 11 lbsextg W LVec 𝒫 Base W dom card Base W x ¬ x LSpan W x s J s
13 8 9 12 mp3an23 W LVec 𝒫 Base W dom card s J s
14 2 7 13 syl2anr CHOICE W LVec s J s
15 rexn0 s J s J
16 14 15 syl CHOICE W LVec J