Metamath Proof Explorer


Theorem lbsexg

Description: Every vector space has a basis. This theorem is an AC equivalent; this is the forward implication. (Contributed by Mario Carneiro, 17-May-2015)

Ref Expression
Hypothesis lbsex.j J=LBasisW
Assertion lbsexg CHOICEWLVecJ

Proof

Step Hyp Ref Expression
1 lbsex.j J=LBasisW
2 id WLVecWLVec
3 fvex BaseWV
4 3 pwex 𝒫BaseWV
5 dfac10 CHOICEdomcard=V
6 5 biimpi CHOICEdomcard=V
7 4 6 eleqtrrid CHOICE𝒫BaseWdomcard
8 0ss BaseW
9 ral0 x¬xLSpanWx
10 eqid BaseW=BaseW
11 eqid LSpanW=LSpanW
12 1 10 11 lbsextg WLVec𝒫BaseWdomcardBaseWx¬xLSpanWxsJs
13 8 9 12 mp3an23 WLVec𝒫BaseWdomcardsJs
14 2 7 13 syl2anr CHOICEWLVecsJs
15 rexn0 sJsJ
16 14 15 syl CHOICEWLVecJ