Description: Every vector space has a basis. This theorem is an AC equivalent; this is the forward implication. (Contributed by Mario Carneiro, 17-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lbsex.j | |
|
Assertion | lbsexg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbsex.j | |
|
2 | id | |
|
3 | fvex | |
|
4 | 3 | pwex | |
5 | dfac10 | |
|
6 | 5 | biimpi | |
7 | 4 6 | eleqtrrid | |
8 | 0ss | |
|
9 | ral0 | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | 1 10 11 | lbsextg | |
13 | 8 9 12 | mp3an23 | |
14 | 2 7 13 | syl2anr | |
15 | rexn0 | |
|
16 | 14 15 | syl | |