Metamath Proof Explorer


Theorem lbsext

Description: For any linearly independent subset C of V , there is a basis containing the vectors in C . (Contributed by Mario Carneiro, 25-Jun-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Hypotheses lbsex.j J=LBasisW
lbsex.v V=BaseW
lbsex.n N=LSpanW
Assertion lbsext WLVecCVxC¬xNCxsJCs

Proof

Step Hyp Ref Expression
1 lbsex.j J=LBasisW
2 lbsex.v V=BaseW
3 lbsex.n N=LSpanW
4 2 fvexi VV
5 4 pwex 𝒫VV
6 numth3 𝒫VV𝒫Vdomcard
7 5 6 ax-mp 𝒫Vdomcard
8 7 jctr WLVecWLVec𝒫Vdomcard
9 1 2 3 lbsextg WLVec𝒫VdomcardCVxC¬xNCxsJCs
10 8 9 syl3an1 WLVecCVxC¬xNCxsJCs