Metamath Proof Explorer


Theorem lbsext

Description: For any linearly independent subset C of V , there is a basis containing the vectors in C . (Contributed by Mario Carneiro, 25-Jun-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Hypotheses lbsex.j J = LBasis W
lbsex.v V = Base W
lbsex.n N = LSpan W
Assertion lbsext W LVec C V x C ¬ x N C x s J C s

Proof

Step Hyp Ref Expression
1 lbsex.j J = LBasis W
2 lbsex.v V = Base W
3 lbsex.n N = LSpan W
4 2 fvexi V V
5 4 pwex 𝒫 V V
6 numth3 𝒫 V V 𝒫 V dom card
7 5 6 ax-mp 𝒫 V dom card
8 7 jctr W LVec W LVec 𝒫 V dom card
9 1 2 3 lbsextg W LVec 𝒫 V dom card C V x C ¬ x N C x s J C s
10 8 9 syl3an1 W LVec C V x C ¬ x N C x s J C s