Metamath Proof Explorer


Theorem lbsextg

Description: For any linearly independent subset C of V , there is a basis containing the vectors in C . (Contributed by Mario Carneiro, 17-May-2015)

Ref Expression
Hypotheses lbsex.j J = LBasis W
lbsex.v V = Base W
lbsex.n N = LSpan W
Assertion lbsextg W LVec 𝒫 V dom card C V x C ¬ x N C x s J C s

Proof

Step Hyp Ref Expression
1 lbsex.j J = LBasis W
2 lbsex.v V = Base W
3 lbsex.n N = LSpan W
4 simp1l W LVec 𝒫 V dom card C V x C ¬ x N C x W LVec
5 simp2 W LVec 𝒫 V dom card C V x C ¬ x N C x C V
6 simp3 W LVec 𝒫 V dom card C V x C ¬ x N C x x C ¬ x N C x
7 id x = y x = y
8 sneq x = y x = y
9 8 difeq2d x = y C x = C y
10 9 fveq2d x = y N C x = N C y
11 7 10 eleq12d x = y x N C x y N C y
12 11 notbid x = y ¬ x N C x ¬ y N C y
13 12 cbvralvw x C ¬ x N C x y C ¬ y N C y
14 6 13 sylib W LVec 𝒫 V dom card C V x C ¬ x N C x y C ¬ y N C y
15 8 difeq2d x = y z x = z y
16 15 fveq2d x = y N z x = N z y
17 7 16 eleq12d x = y x N z x y N z y
18 17 notbid x = y ¬ x N z x ¬ y N z y
19 18 cbvralvw x z ¬ x N z x y z ¬ y N z y
20 19 anbi2i C z x z ¬ x N z x C z y z ¬ y N z y
21 20 rabbii z 𝒫 V | C z x z ¬ x N z x = z 𝒫 V | C z y z ¬ y N z y
22 simp1r W LVec 𝒫 V dom card C V x C ¬ x N C x 𝒫 V dom card
23 2 1 3 4 5 14 21 22 lbsextlem4 W LVec 𝒫 V dom card C V x C ¬ x N C x s J C s