Metamath Proof Explorer


Theorem lbsextlem1

Description: Lemma for lbsext . The set S is the set of all linearly independent sets containing C ; we show here that it is nonempty. (Contributed by Mario Carneiro, 25-Jun-2014)

Ref Expression
Hypotheses lbsext.v V = Base W
lbsext.j J = LBasis W
lbsext.n N = LSpan W
lbsext.w φ W LVec
lbsext.c φ C V
lbsext.x φ x C ¬ x N C x
lbsext.s S = z 𝒫 V | C z x z ¬ x N z x
Assertion lbsextlem1 φ S

Proof

Step Hyp Ref Expression
1 lbsext.v V = Base W
2 lbsext.j J = LBasis W
3 lbsext.n N = LSpan W
4 lbsext.w φ W LVec
5 lbsext.c φ C V
6 lbsext.x φ x C ¬ x N C x
7 lbsext.s S = z 𝒫 V | C z x z ¬ x N z x
8 1 fvexi V V
9 8 elpw2 C 𝒫 V C V
10 5 9 sylibr φ C 𝒫 V
11 ssid C C
12 6 11 jctil φ C C x C ¬ x N C x
13 sseq2 z = C C z C C
14 difeq1 z = C z x = C x
15 14 fveq2d z = C N z x = N C x
16 15 eleq2d z = C x N z x x N C x
17 16 notbid z = C ¬ x N z x ¬ x N C x
18 17 raleqbi1dv z = C x z ¬ x N z x x C ¬ x N C x
19 13 18 anbi12d z = C C z x z ¬ x N z x C C x C ¬ x N C x
20 19 7 elrab2 C S C 𝒫 V C C x C ¬ x N C x
21 10 12 20 sylanbrc φ C S
22 21 ne0d φ S