Step |
Hyp |
Ref |
Expression |
1 |
|
lbsext.v |
|
2 |
|
lbsext.j |
|
3 |
|
lbsext.n |
|
4 |
|
lbsext.w |
|
5 |
|
lbsext.c |
|
6 |
|
lbsext.x |
|
7 |
|
lbsext.s |
|
8 |
|
lbsext.p |
|
9 |
|
lbsext.a |
|
10 |
|
lbsext.z |
|
11 |
|
lbsext.r |
|
12 |
|
lbsext.t |
|
13 |
|
eqidd |
|
14 |
|
eqidd |
|
15 |
1
|
a1i |
|
16 |
|
eqidd |
|
17 |
|
eqidd |
|
18 |
8
|
a1i |
|
19 |
|
lveclmod |
|
20 |
4 19
|
syl |
|
21 |
7
|
ssrab3 |
|
22 |
9 21
|
sstrdi |
|
23 |
22
|
sselda |
|
24 |
23
|
elpwid |
|
25 |
24
|
ssdifssd |
|
26 |
1 3
|
lspssv |
|
27 |
20 25 26
|
syl2an2r |
|
28 |
27
|
ralrimiva |
|
29 |
|
iunss |
|
30 |
28 29
|
sylibr |
|
31 |
12 30
|
eqsstrid |
|
32 |
12
|
a1i |
|
33 |
1 8 3
|
lspcl |
|
34 |
20 25 33
|
syl2an2r |
|
35 |
8
|
lssn0 |
|
36 |
34 35
|
syl |
|
37 |
36
|
ralrimiva |
|
38 |
|
r19.2z |
|
39 |
10 37 38
|
syl2anc |
|
40 |
|
iunn0 |
|
41 |
39 40
|
sylib |
|
42 |
32 41
|
eqnetrd |
|
43 |
12
|
eleq2i |
|
44 |
|
eliun |
|
45 |
|
difeq1 |
|
46 |
45
|
fveq2d |
|
47 |
46
|
eleq2d |
|
48 |
47
|
cbvrexvw |
|
49 |
43 44 48
|
3bitri |
|
50 |
12
|
eleq2i |
|
51 |
|
eliun |
|
52 |
|
difeq1 |
|
53 |
52
|
fveq2d |
|
54 |
53
|
eleq2d |
|
55 |
54
|
cbvrexvw |
|
56 |
50 51 55
|
3bitri |
|
57 |
49 56
|
anbi12i |
|
58 |
|
reeanv |
|
59 |
57 58
|
bitr4i |
|
60 |
|
simp1l |
|
61 |
60 11
|
syl |
|
62 |
|
simp2 |
|
63 |
|
sorpssun |
|
64 |
61 62 63
|
syl2anc |
|
65 |
60 20
|
syl |
|
66 |
|
elssuni |
|
67 |
64 66
|
syl |
|
68 |
|
sspwuni |
|
69 |
22 68
|
sylib |
|
70 |
60 69
|
syl |
|
71 |
67 70
|
sstrd |
|
72 |
71
|
ssdifssd |
|
73 |
1 8 3
|
lspcl |
|
74 |
65 72 73
|
syl2anc |
|
75 |
|
simp1r |
|
76 |
|
ssun1 |
|
77 |
|
ssdif |
|
78 |
76 77
|
mp1i |
|
79 |
1 3
|
lspss |
|
80 |
65 72 78 79
|
syl3anc |
|
81 |
|
simp3l |
|
82 |
80 81
|
sseldd |
|
83 |
|
ssun2 |
|
84 |
|
ssdif |
|
85 |
83 84
|
mp1i |
|
86 |
1 3
|
lspss |
|
87 |
65 72 85 86
|
syl3anc |
|
88 |
|
simp3r |
|
89 |
87 88
|
sseldd |
|
90 |
|
eqid |
|
91 |
|
eqid |
|
92 |
|
eqid |
|
93 |
|
eqid |
|
94 |
90 91 92 93 8
|
lsscl |
|
95 |
74 75 82 89 94
|
syl13anc |
|
96 |
|
difeq1 |
|
97 |
96
|
fveq2d |
|
98 |
97
|
eliuni |
|
99 |
64 95 98
|
syl2anc |
|
100 |
99 12
|
eleqtrrdi |
|
101 |
100
|
3expia |
|
102 |
101
|
rexlimdvva |
|
103 |
59 102
|
syl5bi |
|
104 |
103
|
exp4b |
|
105 |
104
|
3imp2 |
|
106 |
13 14 15 16 17 18 31 42 105
|
islssd |
|
107 |
|
eldifi |
|
108 |
107
|
adantl |
|
109 |
|
eldifn |
|
110 |
109
|
ad2antlr |
|
111 |
|
eldif |
|
112 |
1 3
|
lspssid |
|
113 |
20 25 112
|
syl2an2r |
|
114 |
113
|
adantlr |
|
115 |
114
|
sseld |
|
116 |
111 115
|
syl5bir |
|
117 |
110 116
|
mpan2d |
|
118 |
117
|
reximdva |
|
119 |
|
eluni2 |
|
120 |
|
eliun |
|
121 |
118 119 120
|
3imtr4g |
|
122 |
108 121
|
mpd |
|
123 |
122
|
ex |
|
124 |
123
|
ssrdv |
|
125 |
124 12
|
sseqtrrdi |
|
126 |
106 125
|
jca |
|