Metamath Proof Explorer


Theorem lbsextlem2

Description: Lemma for lbsext . Since A is a chain (actually, we only need it to be closed under binary union), the union T of the spans of each individual element of A is a subspace, and it contains all of U. A (except for our target vector x - we are trying to make x a linear combination of all the other vectors in some set from A ). (Contributed by Mario Carneiro, 25-Jun-2014)

Ref Expression
Hypotheses lbsext.v V = Base W
lbsext.j J = LBasis W
lbsext.n N = LSpan W
lbsext.w φ W LVec
lbsext.c φ C V
lbsext.x φ x C ¬ x N C x
lbsext.s S = z 𝒫 V | C z x z ¬ x N z x
lbsext.p P = LSubSp W
lbsext.a φ A S
lbsext.z φ A
lbsext.r φ [⊂] Or A
lbsext.t T = u A N u x
Assertion lbsextlem2 φ T P A x T

Proof

Step Hyp Ref Expression
1 lbsext.v V = Base W
2 lbsext.j J = LBasis W
3 lbsext.n N = LSpan W
4 lbsext.w φ W LVec
5 lbsext.c φ C V
6 lbsext.x φ x C ¬ x N C x
7 lbsext.s S = z 𝒫 V | C z x z ¬ x N z x
8 lbsext.p P = LSubSp W
9 lbsext.a φ A S
10 lbsext.z φ A
11 lbsext.r φ [⊂] Or A
12 lbsext.t T = u A N u x
13 eqidd φ Scalar W = Scalar W
14 eqidd φ Base Scalar W = Base Scalar W
15 1 a1i φ V = Base W
16 eqidd φ + W = + W
17 eqidd φ W = W
18 8 a1i φ P = LSubSp W
19 lveclmod W LVec W LMod
20 4 19 syl φ W LMod
21 7 ssrab3 S 𝒫 V
22 9 21 sstrdi φ A 𝒫 V
23 22 sselda φ u A u 𝒫 V
24 23 elpwid φ u A u V
25 24 ssdifssd φ u A u x V
26 1 3 lspssv W LMod u x V N u x V
27 20 25 26 syl2an2r φ u A N u x V
28 27 ralrimiva φ u A N u x V
29 iunss u A N u x V u A N u x V
30 28 29 sylibr φ u A N u x V
31 12 30 eqsstrid φ T V
32 12 a1i φ T = u A N u x
33 1 8 3 lspcl W LMod u x V N u x P
34 20 25 33 syl2an2r φ u A N u x P
35 8 lssn0 N u x P N u x
36 34 35 syl φ u A N u x
37 36 ralrimiva φ u A N u x
38 r19.2z A u A N u x u A N u x
39 10 37 38 syl2anc φ u A N u x
40 iunn0 u A N u x u A N u x
41 39 40 sylib φ u A N u x
42 32 41 eqnetrd φ T
43 12 eleq2i v T v u A N u x
44 eliun v u A N u x u A v N u x
45 difeq1 u = m u x = m x
46 45 fveq2d u = m N u x = N m x
47 46 eleq2d u = m v N u x v N m x
48 47 cbvrexvw u A v N u x m A v N m x
49 43 44 48 3bitri v T m A v N m x
50 12 eleq2i w T w u A N u x
51 eliun w u A N u x u A w N u x
52 difeq1 u = n u x = n x
53 52 fveq2d u = n N u x = N n x
54 53 eleq2d u = n w N u x w N n x
55 54 cbvrexvw u A w N u x n A w N n x
56 50 51 55 3bitri w T n A w N n x
57 49 56 anbi12i v T w T m A v N m x n A w N n x
58 reeanv m A n A v N m x w N n x m A v N m x n A w N n x
59 57 58 bitr4i v T w T m A n A v N m x w N n x
60 simp1l φ r Base Scalar W m A n A v N m x w N n x φ
61 60 11 syl φ r Base Scalar W m A n A v N m x w N n x [⊂] Or A
62 simp2 φ r Base Scalar W m A n A v N m x w N n x m A n A
63 sorpssun [⊂] Or A m A n A m n A
64 61 62 63 syl2anc φ r Base Scalar W m A n A v N m x w N n x m n A
65 60 20 syl φ r Base Scalar W m A n A v N m x w N n x W LMod
66 elssuni m n A m n A
67 64 66 syl φ r Base Scalar W m A n A v N m x w N n x m n A
68 sspwuni A 𝒫 V A V
69 22 68 sylib φ A V
70 60 69 syl φ r Base Scalar W m A n A v N m x w N n x A V
71 67 70 sstrd φ r Base Scalar W m A n A v N m x w N n x m n V
72 71 ssdifssd φ r Base Scalar W m A n A v N m x w N n x m n x V
73 1 8 3 lspcl W LMod m n x V N m n x P
74 65 72 73 syl2anc φ r Base Scalar W m A n A v N m x w N n x N m n x P
75 simp1r φ r Base Scalar W m A n A v N m x w N n x r Base Scalar W
76 ssun1 m m n
77 ssdif m m n m x m n x
78 76 77 mp1i φ r Base Scalar W m A n A v N m x w N n x m x m n x
79 1 3 lspss W LMod m n x V m x m n x N m x N m n x
80 65 72 78 79 syl3anc φ r Base Scalar W m A n A v N m x w N n x N m x N m n x
81 simp3l φ r Base Scalar W m A n A v N m x w N n x v N m x
82 80 81 sseldd φ r Base Scalar W m A n A v N m x w N n x v N m n x
83 ssun2 n m n
84 ssdif n m n n x m n x
85 83 84 mp1i φ r Base Scalar W m A n A v N m x w N n x n x m n x
86 1 3 lspss W LMod m n x V n x m n x N n x N m n x
87 65 72 85 86 syl3anc φ r Base Scalar W m A n A v N m x w N n x N n x N m n x
88 simp3r φ r Base Scalar W m A n A v N m x w N n x w N n x
89 87 88 sseldd φ r Base Scalar W m A n A v N m x w N n x w N m n x
90 eqid Scalar W = Scalar W
91 eqid Base Scalar W = Base Scalar W
92 eqid + W = + W
93 eqid W = W
94 90 91 92 93 8 lsscl N m n x P r Base Scalar W v N m n x w N m n x r W v + W w N m n x
95 74 75 82 89 94 syl13anc φ r Base Scalar W m A n A v N m x w N n x r W v + W w N m n x
96 difeq1 u = m n u x = m n x
97 96 fveq2d u = m n N u x = N m n x
98 97 eliuni m n A r W v + W w N m n x r W v + W w u A N u x
99 64 95 98 syl2anc φ r Base Scalar W m A n A v N m x w N n x r W v + W w u A N u x
100 99 12 eleqtrrdi φ r Base Scalar W m A n A v N m x w N n x r W v + W w T
101 100 3expia φ r Base Scalar W m A n A v N m x w N n x r W v + W w T
102 101 rexlimdvva φ r Base Scalar W m A n A v N m x w N n x r W v + W w T
103 59 102 syl5bi φ r Base Scalar W v T w T r W v + W w T
104 103 exp4b φ r Base Scalar W v T w T r W v + W w T
105 104 3imp2 φ r Base Scalar W v T w T r W v + W w T
106 13 14 15 16 17 18 31 42 105 islssd φ T P
107 eldifi y A x y A
108 107 adantl φ y A x y A
109 eldifn y A x ¬ y x
110 109 ad2antlr φ y A x u A ¬ y x
111 eldif y u x y u ¬ y x
112 1 3 lspssid W LMod u x V u x N u x
113 20 25 112 syl2an2r φ u A u x N u x
114 113 adantlr φ y A x u A u x N u x
115 114 sseld φ y A x u A y u x y N u x
116 111 115 syl5bir φ y A x u A y u ¬ y x y N u x
117 110 116 mpan2d φ y A x u A y u y N u x
118 117 reximdva φ y A x u A y u u A y N u x
119 eluni2 y A u A y u
120 eliun y u A N u x u A y N u x
121 118 119 120 3imtr4g φ y A x y A y u A N u x
122 108 121 mpd φ y A x y u A N u x
123 122 ex φ y A x y u A N u x
124 123 ssrdv φ A x u A N u x
125 124 12 sseqtrrdi φ A x T
126 106 125 jca φ T P A x T