Metamath Proof Explorer


Theorem lbsextlem4

Description: Lemma for lbsext . lbsextlem3 satisfies the conditions for the application of Zorn's lemma zorn (thus invoking AC), and so there is a maximal linearly independent set extending C . Here we prove that such a set is a basis. (Contributed by Mario Carneiro, 25-Jun-2014)

Ref Expression
Hypotheses lbsext.v V = Base W
lbsext.j J = LBasis W
lbsext.n N = LSpan W
lbsext.w φ W LVec
lbsext.c φ C V
lbsext.x φ x C ¬ x N C x
lbsext.s S = z 𝒫 V | C z x z ¬ x N z x
lbsext.k φ 𝒫 V dom card
Assertion lbsextlem4 φ s J C s

Proof

Step Hyp Ref Expression
1 lbsext.v V = Base W
2 lbsext.j J = LBasis W
3 lbsext.n N = LSpan W
4 lbsext.w φ W LVec
5 lbsext.c φ C V
6 lbsext.x φ x C ¬ x N C x
7 lbsext.s S = z 𝒫 V | C z x z ¬ x N z x
8 lbsext.k φ 𝒫 V dom card
9 7 ssrab3 S 𝒫 V
10 ssnum 𝒫 V dom card S 𝒫 V S dom card
11 8 9 10 sylancl φ S dom card
12 1 2 3 4 5 6 7 lbsextlem1 φ S
13 4 adantr φ y S y [⊂] Or y W LVec
14 5 adantr φ y S y [⊂] Or y C V
15 6 adantr φ y S y [⊂] Or y x C ¬ x N C x
16 eqid LSubSp W = LSubSp W
17 simpr1 φ y S y [⊂] Or y y S
18 simpr2 φ y S y [⊂] Or y y
19 simpr3 φ y S y [⊂] Or y [⊂] Or y
20 eqid u y N u x = u y N u x
21 1 2 3 13 14 15 7 16 17 18 19 20 lbsextlem3 φ y S y [⊂] Or y y S
22 21 ex φ y S y [⊂] Or y y S
23 22 alrimiv φ y y S y [⊂] Or y y S
24 zornn0g S dom card S y y S y [⊂] Or y y S s S t S ¬ s t
25 11 12 23 24 syl3anc φ s S t S ¬ s t
26 simprl φ s S t S ¬ s t s S
27 sseq2 z = s C z C s
28 difeq1 z = s z x = s x
29 28 fveq2d z = s N z x = N s x
30 29 eleq2d z = s x N z x x N s x
31 30 notbid z = s ¬ x N z x ¬ x N s x
32 31 raleqbi1dv z = s x z ¬ x N z x x s ¬ x N s x
33 27 32 anbi12d z = s C z x z ¬ x N z x C s x s ¬ x N s x
34 33 7 elrab2 s S s 𝒫 V C s x s ¬ x N s x
35 26 34 sylib φ s S t S ¬ s t s 𝒫 V C s x s ¬ x N s x
36 35 simpld φ s S t S ¬ s t s 𝒫 V
37 36 elpwid φ s S t S ¬ s t s V
38 lveclmod W LVec W LMod
39 4 38 syl φ W LMod
40 39 adantr φ s S t S ¬ s t W LMod
41 1 3 lspssv W LMod s V N s V
42 40 37 41 syl2anc φ s S t S ¬ s t N s V
43 ssun1 s s w
44 43 a1i φ s S t S ¬ s t w V N s s s w
45 ssun2 w s w
46 vsnid w w
47 45 46 sselii w s w
48 1 3 lspssid W LMod s V s N s
49 40 37 48 syl2anc φ s S t S ¬ s t s N s
50 49 adantr φ s S t S ¬ s t w V N s s N s
51 eldifn w V N s ¬ w N s
52 51 adantl φ s S t S ¬ s t w V N s ¬ w N s
53 50 52 ssneldd φ s S t S ¬ s t w V N s ¬ w s
54 nelne1 w s w ¬ w s s w s
55 47 53 54 sylancr φ s S t S ¬ s t w V N s s w s
56 55 necomd φ s S t S ¬ s t w V N s s s w
57 df-pss s s w s s w s s w
58 44 56 57 sylanbrc φ s S t S ¬ s t w V N s s s w
59 psseq2 t = s w s t s s w
60 59 notbid t = s w ¬ s t ¬ s s w
61 simplrr φ s S t S ¬ s t w V N s t S ¬ s t
62 37 adantr φ s S t S ¬ s t w V N s s V
63 eldifi w V N s w V
64 63 adantl φ s S t S ¬ s t w V N s w V
65 64 snssd φ s S t S ¬ s t w V N s w V
66 62 65 unssd φ s S t S ¬ s t w V N s s w V
67 1 fvexi V V
68 67 elpw2 s w 𝒫 V s w V
69 66 68 sylibr φ s S t S ¬ s t w V N s s w 𝒫 V
70 35 simprd φ s S t S ¬ s t C s x s ¬ x N s x
71 70 simpld φ s S t S ¬ s t C s
72 71 adantr φ s S t S ¬ s t w V N s C s
73 72 43 sstrdi φ s S t S ¬ s t w V N s C s w
74 4 ad2antrr φ s S t S ¬ s t w V N s x s x N s w x W LVec
75 37 adantr φ s S t S ¬ s t w V N s x s x N s w x s V
76 75 ssdifssd φ s S t S ¬ s t w V N s x s x N s w x s x V
77 64 adantrr φ s S t S ¬ s t w V N s x s x N s w x w V
78 simprrr φ s S t S ¬ s t w V N s x s x N s w x x N s w x
79 difundir s w x = s x w x
80 simprrl φ s S t S ¬ s t w V N s x s x N s w x x s
81 53 adantrr φ s S t S ¬ s t w V N s x s x N s w x ¬ w s
82 nelne2 x s ¬ w s x w
83 80 81 82 syl2anc φ s S t S ¬ s t w V N s x s x N s w x x w
84 nelsn x w ¬ x w
85 83 84 syl φ s S t S ¬ s t w V N s x s x N s w x ¬ x w
86 disjsn w x = ¬ x w
87 85 86 sylibr φ s S t S ¬ s t w V N s x s x N s w x w x =
88 disj3 w x = w = w x
89 87 88 sylib φ s S t S ¬ s t w V N s x s x N s w x w = w x
90 89 uneq2d φ s S t S ¬ s t w V N s x s x N s w x s x w = s x w x
91 79 90 eqtr4id φ s S t S ¬ s t w V N s x s x N s w x s w x = s x w
92 91 fveq2d φ s S t S ¬ s t w V N s x s x N s w x N s w x = N s x w
93 78 92 eleqtrd φ s S t S ¬ s t w V N s x s x N s w x x N s x w
94 70 simprd φ s S t S ¬ s t x s ¬ x N s x
95 94 adantr φ s S t S ¬ s t w V N s x s x N s w x x s ¬ x N s x
96 rsp x s ¬ x N s x x s ¬ x N s x
97 95 80 96 sylc φ s S t S ¬ s t w V N s x s x N s w x ¬ x N s x
98 93 97 eldifd φ s S t S ¬ s t w V N s x s x N s w x x N s x w N s x
99 1 16 3 lspsolv W LVec s x V w V x N s x w N s x w N s x x
100 74 76 77 98 99 syl13anc φ s S t S ¬ s t w V N s x s x N s w x w N s x x
101 undif1 s x x = s x
102 80 snssd φ s S t S ¬ s t w V N s x s x N s w x x s
103 ssequn2 x s s x = s
104 102 103 sylib φ s S t S ¬ s t w V N s x s x N s w x s x = s
105 101 104 eqtrid φ s S t S ¬ s t w V N s x s x N s w x s x x = s
106 105 fveq2d φ s S t S ¬ s t w V N s x s x N s w x N s x x = N s
107 100 106 eleqtrd φ s S t S ¬ s t w V N s x s x N s w x w N s
108 107 expr φ s S t S ¬ s t w V N s x s x N s w x w N s
109 52 108 mtod φ s S t S ¬ s t w V N s ¬ x s x N s w x
110 imnan x s ¬ x N s w x ¬ x s x N s w x
111 109 110 sylibr φ s S t S ¬ s t w V N s x s ¬ x N s w x
112 111 ralrimiv φ s S t S ¬ s t w V N s x s ¬ x N s w x
113 difssd φ s S t S ¬ s t s w s
114 1 3 lspss W LMod s V s w s N s w N s
115 40 37 113 114 syl3anc φ s S t S ¬ s t N s w N s
116 115 adantr φ s S t S ¬ s t w V N s N s w N s
117 116 52 ssneldd φ s S t S ¬ s t w V N s ¬ w N s w
118 vex w V
119 id x = w x = w
120 sneq x = w x = w
121 120 difeq2d x = w s w x = s w w
122 difun2 s w w = s w
123 121 122 eqtrdi x = w s w x = s w
124 123 fveq2d x = w N s w x = N s w
125 119 124 eleq12d x = w x N s w x w N s w
126 125 notbid x = w ¬ x N s w x ¬ w N s w
127 118 126 ralsn x w ¬ x N s w x ¬ w N s w
128 117 127 sylibr φ s S t S ¬ s t w V N s x w ¬ x N s w x
129 ralun x s ¬ x N s w x x w ¬ x N s w x x s w ¬ x N s w x
130 112 128 129 syl2anc φ s S t S ¬ s t w V N s x s w ¬ x N s w x
131 73 130 jca φ s S t S ¬ s t w V N s C s w x s w ¬ x N s w x
132 sseq2 z = s w C z C s w
133 difeq1 z = s w z x = s w x
134 133 fveq2d z = s w N z x = N s w x
135 134 eleq2d z = s w x N z x x N s w x
136 135 notbid z = s w ¬ x N z x ¬ x N s w x
137 136 raleqbi1dv z = s w x z ¬ x N z x x s w ¬ x N s w x
138 132 137 anbi12d z = s w C z x z ¬ x N z x C s w x s w ¬ x N s w x
139 138 7 elrab2 s w S s w 𝒫 V C s w x s w ¬ x N s w x
140 69 131 139 sylanbrc φ s S t S ¬ s t w V N s s w S
141 60 61 140 rspcdva φ s S t S ¬ s t w V N s ¬ s s w
142 58 141 pm2.65da φ s S t S ¬ s t ¬ w V N s
143 142 eq0rdv φ s S t S ¬ s t V N s =
144 ssdif0 V N s V N s =
145 143 144 sylibr φ s S t S ¬ s t V N s
146 42 145 eqssd φ s S t S ¬ s t N s = V
147 4 adantr φ s S t S ¬ s t W LVec
148 1 2 3 islbs2 W LVec s J s V N s = V x s ¬ x N s x
149 147 148 syl φ s S t S ¬ s t s J s V N s = V x s ¬ x N s x
150 37 146 94 149 mpbir3and φ s S t S ¬ s t s J
151 25 150 71 reximssdv φ s J C s