| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lbspropd.b1 |
|
| 2 |
|
lbspropd.b2 |
|
| 3 |
|
lbspropd.w |
|
| 4 |
|
lbspropd.p |
|
| 5 |
|
lbspropd.s1 |
|
| 6 |
|
lbspropd.s2 |
|
| 7 |
|
lbspropd.f |
|
| 8 |
|
lbspropd.g |
|
| 9 |
|
lbspropd.p1 |
|
| 10 |
|
lbspropd.p2 |
|
| 11 |
|
lbspropd.a |
|
| 12 |
|
lbspropd.v1 |
|
| 13 |
|
lbspropd.v2 |
|
| 14 |
|
simplll |
|
| 15 |
|
eldifi |
|
| 16 |
15
|
adantl |
|
| 17 |
|
simpr |
|
| 18 |
17
|
sselda |
|
| 19 |
18
|
adantr |
|
| 20 |
6
|
oveqrspc2v |
|
| 21 |
14 16 19 20
|
syl12anc |
|
| 22 |
7
|
fveq2i |
|
| 23 |
9 22
|
eqtrdi |
|
| 24 |
8
|
fveq2i |
|
| 25 |
10 24
|
eqtrdi |
|
| 26 |
1 2 3 4 5 6 23 25 12 13
|
lsppropd |
|
| 27 |
14 26
|
syl |
|
| 28 |
27
|
fveq1d |
|
| 29 |
21 28
|
eleq12d |
|
| 30 |
29
|
notbid |
|
| 31 |
30
|
ralbidva |
|
| 32 |
9
|
ad2antrr |
|
| 33 |
32
|
difeq1d |
|
| 34 |
33
|
raleqdv |
|
| 35 |
10
|
ad2antrr |
|
| 36 |
9 10 11
|
grpidpropd |
|
| 37 |
36
|
ad2antrr |
|
| 38 |
37
|
sneqd |
|
| 39 |
35 38
|
difeq12d |
|
| 40 |
39
|
raleqdv |
|
| 41 |
31 34 40
|
3bitr3d |
|
| 42 |
41
|
ralbidva |
|
| 43 |
42
|
anbi2d |
|
| 44 |
43
|
pm5.32da |
|
| 45 |
1
|
sseq2d |
|
| 46 |
45
|
anbi1d |
|
| 47 |
2
|
sseq2d |
|
| 48 |
26
|
fveq1d |
|
| 49 |
1 2
|
eqtr3d |
|
| 50 |
48 49
|
eqeq12d |
|
| 51 |
50
|
anbi1d |
|
| 52 |
47 51
|
anbi12d |
|
| 53 |
44 46 52
|
3bitr3d |
|
| 54 |
|
3anass |
|
| 55 |
|
3anass |
|
| 56 |
53 54 55
|
3bitr4g |
|
| 57 |
|
eqid |
|
| 58 |
|
eqid |
|
| 59 |
|
eqid |
|
| 60 |
|
eqid |
|
| 61 |
|
eqid |
|
| 62 |
|
eqid |
|
| 63 |
57 7 58 59 60 61 62
|
islbs |
|
| 64 |
12 63
|
syl |
|
| 65 |
|
eqid |
|
| 66 |
|
eqid |
|
| 67 |
|
eqid |
|
| 68 |
|
eqid |
|
| 69 |
|
eqid |
|
| 70 |
|
eqid |
|
| 71 |
65 8 66 67 68 69 70
|
islbs |
|
| 72 |
13 71
|
syl |
|
| 73 |
56 64 72
|
3bitr4d |
|
| 74 |
73
|
eqrdv |
|