Metamath Proof Explorer


Theorem lbspss

Description: No proper subset of a basis spans the space. (Contributed by Mario Carneiro, 25-Jun-2014)

Ref Expression
Hypotheses lbsind2.j J = LBasis W
lbsind2.n N = LSpan W
lbsind2.f F = Scalar W
lbsind2.o 1 ˙ = 1 F
lbsind2.z 0 ˙ = 0 F
lbspss.v V = Base W
Assertion lbspss W LMod 1 ˙ 0 ˙ B J C B N C V

Proof

Step Hyp Ref Expression
1 lbsind2.j J = LBasis W
2 lbsind2.n N = LSpan W
3 lbsind2.f F = Scalar W
4 lbsind2.o 1 ˙ = 1 F
5 lbsind2.z 0 ˙ = 0 F
6 lbspss.v V = Base W
7 pssnel C B x x B ¬ x C
8 7 3ad2ant3 W LMod 1 ˙ 0 ˙ B J C B x x B ¬ x C
9 simpl2 W LMod 1 ˙ 0 ˙ B J C B x B ¬ x C B J
10 6 1 lbsss B J B V
11 9 10 syl W LMod 1 ˙ 0 ˙ B J C B x B ¬ x C B V
12 simprl W LMod 1 ˙ 0 ˙ B J C B x B ¬ x C x B
13 11 12 sseldd W LMod 1 ˙ 0 ˙ B J C B x B ¬ x C x V
14 simpl1l W LMod 1 ˙ 0 ˙ B J C B x B ¬ x C W LMod
15 11 ssdifssd W LMod 1 ˙ 0 ˙ B J C B x B ¬ x C B x V
16 simpl3 W LMod 1 ˙ 0 ˙ B J C B x B ¬ x C C B
17 16 pssssd W LMod 1 ˙ 0 ˙ B J C B x B ¬ x C C B
18 17 sseld W LMod 1 ˙ 0 ˙ B J C B x B ¬ x C y C y B
19 simprr W LMod 1 ˙ 0 ˙ B J C B x B ¬ x C ¬ x C
20 eleq1w y = x y C x C
21 20 notbid y = x ¬ y C ¬ x C
22 19 21 syl5ibrcom W LMod 1 ˙ 0 ˙ B J C B x B ¬ x C y = x ¬ y C
23 22 necon2ad W LMod 1 ˙ 0 ˙ B J C B x B ¬ x C y C y x
24 18 23 jcad W LMod 1 ˙ 0 ˙ B J C B x B ¬ x C y C y B y x
25 eldifsn y B x y B y x
26 24 25 syl6ibr W LMod 1 ˙ 0 ˙ B J C B x B ¬ x C y C y B x
27 26 ssrdv W LMod 1 ˙ 0 ˙ B J C B x B ¬ x C C B x
28 6 2 lspss W LMod B x V C B x N C N B x
29 14 15 27 28 syl3anc W LMod 1 ˙ 0 ˙ B J C B x B ¬ x C N C N B x
30 simpl1r W LMod 1 ˙ 0 ˙ B J C B x B ¬ x C 1 ˙ 0 ˙
31 1 2 3 4 5 lbsind2 W LMod 1 ˙ 0 ˙ B J x B ¬ x N B x
32 14 30 9 12 31 syl211anc W LMod 1 ˙ 0 ˙ B J C B x B ¬ x C ¬ x N B x
33 29 32 ssneldd W LMod 1 ˙ 0 ˙ B J C B x B ¬ x C ¬ x N C
34 nelne1 x V ¬ x N C V N C
35 13 33 34 syl2anc W LMod 1 ˙ 0 ˙ B J C B x B ¬ x C V N C
36 35 necomd W LMod 1 ˙ 0 ˙ B J C B x B ¬ x C N C V
37 8 36 exlimddv W LMod 1 ˙ 0 ˙ B J C B N C V