Metamath Proof Explorer


Theorem lbssp

Description: The span of a basis is the whole space. (Contributed by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypotheses lbsss.v V = Base W
lbsss.j J = LBasis W
lbssp.n N = LSpan W
Assertion lbssp B J N B = V

Proof

Step Hyp Ref Expression
1 lbsss.v V = Base W
2 lbsss.j J = LBasis W
3 lbssp.n N = LSpan W
4 elfvdm B LBasis W W dom LBasis
5 4 2 eleq2s B J W dom LBasis
6 eqid Scalar W = Scalar W
7 eqid W = W
8 eqid Base Scalar W = Base Scalar W
9 eqid 0 Scalar W = 0 Scalar W
10 1 6 7 8 2 3 9 islbs W dom LBasis B J B V N B = V x B y Base Scalar W 0 Scalar W ¬ y W x N B x
11 5 10 syl B J B J B V N B = V x B y Base Scalar W 0 Scalar W ¬ y W x N B x
12 11 ibi B J B V N B = V x B y Base Scalar W 0 Scalar W ¬ y W x N B x
13 12 simp2d B J N B = V