Database
BASIC ALGEBRAIC STRUCTURES
Left modules
Subspace sum; bases for a left module
lbsss
Next ⟩
lbsel
Metamath Proof Explorer
Ascii
Unicode
Theorem
lbsss
Description:
A basis is a set of vectors.
(Contributed by
Mario Carneiro
, 24-Jun-2014)
Ref
Expression
Hypotheses
lbsss.v
⊢
V
=
Base
W
lbsss.j
⊢
J
=
LBasis
⁡
W
Assertion
lbsss
⊢
B
∈
J
→
B
⊆
V
Proof
Step
Hyp
Ref
Expression
1
lbsss.v
⊢
V
=
Base
W
2
lbsss.j
⊢
J
=
LBasis
⁡
W
3
elfvdm
⊢
B
∈
LBasis
⁡
W
→
W
∈
dom
⁡
LBasis
4
3
2
eleq2s
⊢
B
∈
J
→
W
∈
dom
⁡
LBasis
5
eqid
⊢
Scalar
⁡
W
=
Scalar
⁡
W
6
eqid
⊢
⋅
W
=
⋅
W
7
eqid
⊢
Base
Scalar
⁡
W
=
Base
Scalar
⁡
W
8
eqid
⊢
LSpan
⁡
W
=
LSpan
⁡
W
9
eqid
⊢
0
Scalar
⁡
W
=
0
Scalar
⁡
W
10
1
5
6
7
2
8
9
islbs
⊢
W
∈
dom
⁡
LBasis
→
B
∈
J
↔
B
⊆
V
∧
LSpan
⁡
W
⁡
B
=
V
∧
∀
x
∈
B
∀
y
∈
Base
Scalar
⁡
W
∖
0
Scalar
⁡
W
¬
y
⋅
W
x
∈
LSpan
⁡
W
⁡
B
∖
x
11
4
10
syl
⊢
B
∈
J
→
B
∈
J
↔
B
⊆
V
∧
LSpan
⁡
W
⁡
B
=
V
∧
∀
x
∈
B
∀
y
∈
Base
Scalar
⁡
W
∖
0
Scalar
⁡
W
¬
y
⋅
W
x
∈
LSpan
⁡
W
⁡
B
∖
x
12
11
ibi
⊢
B
∈
J
→
B
⊆
V
∧
LSpan
⁡
W
⁡
B
=
V
∧
∀
x
∈
B
∀
y
∈
Base
Scalar
⁡
W
∖
0
Scalar
⁡
W
¬
y
⋅
W
x
∈
LSpan
⁡
W
⁡
B
∖
x
13
12
simp1d
⊢
B
∈
J
→
B
⊆
V