Step |
Hyp |
Ref |
Expression |
1 |
|
nfv |
|
2 |
|
nfre1 |
|
3 |
|
btwnz |
|
4 |
3
|
simpld |
|
5 |
|
ssel2 |
|
6 |
|
zre |
|
7 |
|
ltleletr |
|
8 |
6 7
|
syl3an1 |
|
9 |
8
|
expd |
|
10 |
9
|
3expia |
|
11 |
5 10
|
syl5 |
|
12 |
11
|
expdimp |
|
13 |
12
|
com23 |
|
14 |
13
|
imp |
|
15 |
14
|
ralrimiv |
|
16 |
|
ralim |
|
17 |
15 16
|
syl |
|
18 |
17
|
ex |
|
19 |
18
|
anasss |
|
20 |
19
|
expcom |
|
21 |
20
|
com23 |
|
22 |
21
|
imp |
|
23 |
22
|
imdistand |
|
24 |
|
breq1 |
|
25 |
24
|
ralbidv |
|
26 |
25
|
rspcev |
|
27 |
23 26
|
syl6 |
|
28 |
27
|
ex |
|
29 |
28
|
com23 |
|
30 |
29
|
ancomsd |
|
31 |
30
|
expdimp |
|
32 |
31
|
rexlimdv |
|
33 |
32
|
anasss |
|
34 |
33
|
expcom |
|
35 |
4 34
|
mpdi |
|
36 |
35
|
ex |
|
37 |
36
|
com23 |
|
38 |
1 2 37
|
rexlimd |
|
39 |
|
zssre |
|
40 |
|
ssrexv |
|
41 |
39 40
|
ax-mp |
|
42 |
38 41
|
impbid1 |
|