Metamath Proof Explorer


Theorem lcfrlem13

Description: Lemma for lcfr . (Contributed by NM, 8-Mar-2015)

Ref Expression
Hypotheses lcf1o.h H = LHyp K
lcf1o.o ˙ = ocH K W
lcf1o.u U = DVecH K W
lcf1o.v V = Base U
lcf1o.a + ˙ = + U
lcf1o.t · ˙ = U
lcf1o.s S = Scalar U
lcf1o.r R = Base S
lcf1o.z 0 ˙ = 0 U
lcf1o.f F = LFnl U
lcf1o.l L = LKer U
lcf1o.d D = LDual U
lcf1o.q Q = 0 D
lcf1o.c C = f F | ˙ ˙ L f = L f
lcf1o.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
lcflo.k φ K HL W H
lcfrlem10.x φ X V 0 ˙
Assertion lcfrlem13 φ J X C Q

Proof

Step Hyp Ref Expression
1 lcf1o.h H = LHyp K
2 lcf1o.o ˙ = ocH K W
3 lcf1o.u U = DVecH K W
4 lcf1o.v V = Base U
5 lcf1o.a + ˙ = + U
6 lcf1o.t · ˙ = U
7 lcf1o.s S = Scalar U
8 lcf1o.r R = Base S
9 lcf1o.z 0 ˙ = 0 U
10 lcf1o.f F = LFnl U
11 lcf1o.l L = LKer U
12 lcf1o.d D = LDual U
13 lcf1o.q Q = 0 D
14 lcf1o.c C = f F | ˙ ˙ L f = L f
15 lcf1o.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
16 lcflo.k φ K HL W H
17 lcfrlem10.x φ X V 0 ˙
18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 lcf1o φ J : V 0 ˙ 1-1 onto C Q
19 f1of J : V 0 ˙ 1-1 onto C Q J : V 0 ˙ C Q
20 18 19 syl φ J : V 0 ˙ C Q
21 20 17 ffvelrnd φ J X C Q