Metamath Proof Explorer


Theorem lcm1

Description: The lcm of an integer and 1 is the absolute value of the integer. (Contributed by AV, 23-Aug-2020)

Ref Expression
Assertion lcm1 M M lcm 1 = M

Proof

Step Hyp Ref Expression
1 gcd1 M M gcd 1 = 1
2 1 oveq2d M M lcm 1 M gcd 1 = M lcm 1 1
3 1z 1
4 lcmcl M 1 M lcm 1 0
5 3 4 mpan2 M M lcm 1 0
6 5 nn0cnd M M lcm 1
7 6 mulid1d M M lcm 1 1 = M lcm 1
8 2 7 eqtr2d M M lcm 1 = M lcm 1 M gcd 1
9 lcmgcd M 1 M lcm 1 M gcd 1 = M 1
10 3 9 mpan2 M M lcm 1 M gcd 1 = M 1
11 zcn M M
12 11 mulid1d M M 1 = M
13 12 fveq2d M M 1 = M
14 8 10 13 3eqtrd M M lcm 1 = M