Metamath Proof Explorer


Theorem lcmdvdsb

Description: Biconditional form of lcmdvds . (Contributed by Steve Rodriguez, 20-Jan-2020)

Ref Expression
Assertion lcmdvdsb K M N M K N K M lcm N K

Proof

Step Hyp Ref Expression
1 lcmdvds K M N M K N K M lcm N K
2 dvdslcm M N M M lcm N N M lcm N
3 2 simpld M N M M lcm N
4 3 3adant1 K M N M M lcm N
5 simp2 K M N M
6 lcmcl M N M lcm N 0
7 6 nn0zd M N M lcm N
8 7 3adant1 K M N M lcm N
9 simp1 K M N K
10 dvdstr M M lcm N K M M lcm N M lcm N K M K
11 5 8 9 10 syl3anc K M N M M lcm N M lcm N K M K
12 4 11 mpand K M N M lcm N K M K
13 2 simprd M N N M lcm N
14 13 3adant1 K M N N M lcm N
15 dvdstr N M lcm N K N M lcm N M lcm N K N K
16 15 3com13 K M lcm N N N M lcm N M lcm N K N K
17 8 16 syld3an2 K M N N M lcm N M lcm N K N K
18 14 17 mpand K M N M lcm N K N K
19 12 18 jcad K M N M lcm N K M K N K
20 1 19 impbid K M N M K N K M lcm N K