Metamath Proof Explorer


Theorem lcmf0

Description: The least common multiple of the empty set is 1. (Contributed by AV, 22-Aug-2020) (Proof shortened by AV, 16-Sep-2020)

Ref Expression
Assertion lcmf0 lcm _ = 1

Proof

Step Hyp Ref Expression
1 0ss
2 0fin Fin
3 noel ¬ 0
4 3 nelir 0
5 lcmfn0val Fin 0 lcm _ = sup n | m m n <
6 1 2 4 5 mp3an lcm _ = sup n | m m n <
7 ral0 m m n
8 7 rgenw n m m n
9 rabid2 = n | m m n n m m n
10 8 9 mpbir = n | m m n
11 10 eqcomi n | m m n =
12 11 infeq1i sup n | m m n < = sup <
13 nninf sup < = 1
14 6 12 13 3eqtri lcm _ = 1