Metamath Proof Explorer


Theorem lcmf0val

Description: The value, by convention, of the least common multiple for a set containing 0 is 0. (Contributed by AV, 21-Apr-2020) (Proof shortened by AV, 16-Sep-2020)

Ref Expression
Assertion lcmf0val Z 0 Z lcm _ Z = 0

Proof

Step Hyp Ref Expression
1 df-lcmf lcm _ = z 𝒫 if 0 z 0 sup n | m z m n <
2 eleq2 z = Z 0 z 0 Z
3 raleq z = Z m z m n m Z m n
4 3 rabbidv z = Z n | m z m n = n | m Z m n
5 4 infeq1d z = Z sup n | m z m n < = sup n | m Z m n <
6 2 5 ifbieq2d z = Z if 0 z 0 sup n | m z m n < = if 0 Z 0 sup n | m Z m n <
7 iftrue 0 Z if 0 Z 0 sup n | m Z m n < = 0
8 7 adantl Z 0 Z if 0 Z 0 sup n | m Z m n < = 0
9 6 8 sylan9eqr Z 0 Z z = Z if 0 z 0 sup n | m z m n < = 0
10 zex V
11 10 ssex Z Z V
12 elpwg Z V Z 𝒫 Z
13 11 12 syl Z Z 𝒫 Z
14 13 ibir Z Z 𝒫
15 14 adantr Z 0 Z Z 𝒫
16 simpr Z 0 Z 0 Z
17 1 9 15 16 fvmptd2 Z 0 Z lcm _ Z = 0