Metamath Proof Explorer


Theorem lcmfcl

Description: Closure of the _lcm function. (Contributed by AV, 21-Aug-2020)

Ref Expression
Assertion lcmfcl Z Z Fin lcm _ Z 0

Proof

Step Hyp Ref Expression
1 lcmf0val Z 0 Z lcm _ Z = 0
2 0nn0 0 0
3 1 2 eqeltrdi Z 0 Z lcm _ Z 0
4 3 adantlr Z Z Fin 0 Z lcm _ Z 0
5 df-nel 0 Z ¬ 0 Z
6 lcmfn0cl Z Z Fin 0 Z lcm _ Z
7 6 3expa Z Z Fin 0 Z lcm _ Z
8 5 7 sylan2br Z Z Fin ¬ 0 Z lcm _ Z
9 8 nnnn0d Z Z Fin ¬ 0 Z lcm _ Z 0
10 4 9 pm2.61dan Z Z Fin lcm _ Z 0