Database
ELEMENTARY NUMBER THEORY
Elementary properties of divisibility
The least common multiple
lcmfcl
Next ⟩
lcmfnncl
Metamath Proof Explorer
Ascii
Unicode
Theorem
lcmfcl
Description:
Closure of the
_lcm
function.
(Contributed by
AV
, 21-Aug-2020)
Ref
Expression
Assertion
lcmfcl
⊢
Z
⊆
ℤ
∧
Z
∈
Fin
→
lcm
_
⁡
Z
∈
ℕ
0
Proof
Step
Hyp
Ref
Expression
1
lcmf0val
⊢
Z
⊆
ℤ
∧
0
∈
Z
→
lcm
_
⁡
Z
=
0
2
0nn0
⊢
0
∈
ℕ
0
3
1
2
eqeltrdi
⊢
Z
⊆
ℤ
∧
0
∈
Z
→
lcm
_
⁡
Z
∈
ℕ
0
4
3
adantlr
⊢
Z
⊆
ℤ
∧
Z
∈
Fin
∧
0
∈
Z
→
lcm
_
⁡
Z
∈
ℕ
0
5
df-nel
⊢
0
∉
Z
↔
¬
0
∈
Z
6
lcmfn0cl
⊢
Z
⊆
ℤ
∧
Z
∈
Fin
∧
0
∉
Z
→
lcm
_
⁡
Z
∈
ℕ
7
6
3expa
⊢
Z
⊆
ℤ
∧
Z
∈
Fin
∧
0
∉
Z
→
lcm
_
⁡
Z
∈
ℕ
8
5
7
sylan2br
⊢
Z
⊆
ℤ
∧
Z
∈
Fin
∧
¬
0
∈
Z
→
lcm
_
⁡
Z
∈
ℕ
9
8
nnnn0d
⊢
Z
⊆
ℤ
∧
Z
∈
Fin
∧
¬
0
∈
Z
→
lcm
_
⁡
Z
∈
ℕ
0
10
4
9
pm2.61dan
⊢
Z
⊆
ℤ
∧
Z
∈
Fin
→
lcm
_
⁡
Z
∈
ℕ
0