Metamath Proof Explorer


Theorem lcmfcllem

Description: Lemma for lcmfn0cl and dvdslcmf . (Contributed by AV, 21-Aug-2020) (Proof shortened by AV, 16-Sep-2020)

Ref Expression
Assertion lcmfcllem Z Z Fin 0 Z lcm _ Z n | m Z m n

Proof

Step Hyp Ref Expression
1 lcmfn0val Z Z Fin 0 Z lcm _ Z = sup n | m Z m n <
2 ssrab2 n | m Z m n
3 nnuz = 1
4 2 3 sseqtri n | m Z m n 1
5 fissn0dvdsn0 Z Z Fin 0 Z n | m Z m n
6 infssuzcl n | m Z m n 1 n | m Z m n sup n | m Z m n < n | m Z m n
7 4 5 6 sylancr Z Z Fin 0 Z sup n | m Z m n < n | m Z m n
8 1 7 eqeltrd Z Z Fin 0 Z lcm _ Z n | m Z m n