Metamath Proof Explorer


Theorem lcmfdvdsb

Description: Biconditional form of lcmfdvds . (Contributed by AV, 26-Aug-2020)

Ref Expression
Assertion lcmfdvdsb K Z Z Fin m Z m K lcm _ Z K

Proof

Step Hyp Ref Expression
1 lcmfdvds K Z Z Fin m Z m K lcm _ Z K
2 dvdslcmf Z Z Fin x Z x lcm _ Z
3 breq1 x = m x lcm _ Z m lcm _ Z
4 3 rspcv m Z x Z x lcm _ Z m lcm _ Z
5 ssel Z m Z m
6 5 adantr Z Z Fin m Z m
7 6 com12 m Z Z Z Fin m
8 7 adantr m Z K Z Z Fin m
9 8 imp m Z K Z Z Fin m
10 lcmfcl Z Z Fin lcm _ Z 0
11 10 nn0zd Z Z Fin lcm _ Z
12 11 adantl m Z K Z Z Fin lcm _ Z
13 simplr m Z K Z Z Fin K
14 dvdstr m lcm _ Z K m lcm _ Z lcm _ Z K m K
15 9 12 13 14 syl3anc m Z K Z Z Fin m lcm _ Z lcm _ Z K m K
16 15 expd m Z K Z Z Fin m lcm _ Z lcm _ Z K m K
17 16 exp31 m Z K Z Z Fin m lcm _ Z lcm _ Z K m K
18 17 com23 m Z Z Z Fin K m lcm _ Z lcm _ Z K m K
19 18 com24 m Z m lcm _ Z K Z Z Fin lcm _ Z K m K
20 19 com45 m Z m lcm _ Z K lcm _ Z K Z Z Fin m K
21 4 20 syld m Z x Z x lcm _ Z K lcm _ Z K Z Z Fin m K
22 21 com15 Z Z Fin x Z x lcm _ Z K lcm _ Z K m Z m K
23 2 22 mpd Z Z Fin K lcm _ Z K m Z m K
24 23 com12 K Z Z Fin lcm _ Z K m Z m K
25 24 3impib K Z Z Fin lcm _ Z K m Z m K
26 25 ralrimdv K Z Z Fin lcm _ Z K m Z m K
27 1 26 impbid K Z Z Fin m Z m K lcm _ Z K