Metamath Proof Explorer


Theorem lcmfeq0b

Description: The least common multiple of a set of integers is 0 iff at least one of its element is 0. (Contributed by AV, 21-Aug-2020)

Ref Expression
Assertion lcmfeq0b Z Z Fin lcm _ Z = 0 0 Z

Proof

Step Hyp Ref Expression
1 df-nel 0 Z ¬ 0 Z
2 lcmfn0cl Z Z Fin 0 Z lcm _ Z
3 2 nnne0d Z Z Fin 0 Z lcm _ Z 0
4 3 3expia Z Z Fin 0 Z lcm _ Z 0
5 1 4 syl5bir Z Z Fin ¬ 0 Z lcm _ Z 0
6 5 necon4bd Z Z Fin lcm _ Z = 0 0 Z
7 lcmf0val Z 0 Z lcm _ Z = 0
8 7 ex Z 0 Z lcm _ Z = 0
9 8 adantr Z Z Fin 0 Z lcm _ Z = 0
10 6 9 impbid Z Z Fin lcm _ Z = 0 0 Z