Metamath Proof Explorer


Theorem lcmfeq0b

Description: The least common multiple of a set of integers is 0 iff at least one of its element is 0. (Contributed by AV, 21-Aug-2020)

Ref Expression
Assertion lcmfeq0b ZZFinlcm_Z=00Z

Proof

Step Hyp Ref Expression
1 df-nel 0Z¬0Z
2 lcmfn0cl ZZFin0Zlcm_Z
3 2 nnne0d ZZFin0Zlcm_Z0
4 3 3expia ZZFin0Zlcm_Z0
5 1 4 biimtrrid ZZFin¬0Zlcm_Z0
6 5 necon4bd ZZFinlcm_Z=00Z
7 lcmf0val Z0Zlcm_Z=0
8 7 ex Z0Zlcm_Z=0
9 8 adantr ZZFin0Zlcm_Z=0
10 6 9 impbid ZZFinlcm_Z=00Z