Metamath Proof Explorer


Theorem lcmfledvds

Description: A positive integer which is divisible by all elements of a set of integers bounds the least common multiple of the set. (Contributed by AV, 22-Aug-2020) (Proof shortened by AV, 16-Sep-2020)

Ref Expression
Assertion lcmfledvds Z Z Fin 0 Z K m Z m K lcm _ Z K

Proof

Step Hyp Ref Expression
1 lcmfn0val Z Z Fin 0 Z lcm _ Z = sup k | m Z m k <
2 1 adantr Z Z Fin 0 Z K m Z m K lcm _ Z = sup k | m Z m k <
3 ssrab2 k | m Z m k
4 nnuz = 1
5 3 4 sseqtri k | m Z m k 1
6 simpr Z K m Z m K K m Z m K
7 breq2 k = K m k m K
8 7 ralbidv k = K m Z m k m Z m K
9 8 elrab K k | m Z m k K m Z m K
10 6 9 sylibr Z K m Z m K K k | m Z m k
11 infssuzle k | m Z m k 1 K k | m Z m k sup k | m Z m k < K
12 5 10 11 sylancr Z K m Z m K sup k | m Z m k < K
13 12 3ad2antl1 Z Z Fin 0 Z K m Z m K sup k | m Z m k < K
14 2 13 eqbrtrd Z Z Fin 0 Z K m Z m K lcm _ Z K
15 14 ex Z Z Fin 0 Z K m Z m K lcm _ Z K