Metamath Proof Explorer


Theorem lcmflefac

Description: The least common multiple of all positive integers less than or equal to an integer is less than or equal to the factorial of the integer. (Contributed by AV, 16-Aug-2020) (Revised by AV, 27-Aug-2020)

Ref Expression
Assertion lcmflefac N lcm _ 1 N N !

Proof

Step Hyp Ref Expression
1 fzssz 1 N
2 1 a1i N 1 N
3 fzfid N 1 N Fin
4 0nelfz1 0 1 N
5 4 a1i N 0 1 N
6 2 3 5 3jca N 1 N 1 N Fin 0 1 N
7 nnnn0 N N 0
8 7 faccld N N !
9 elfznn m 1 N m
10 elfzuz3 m 1 N N m
11 10 adantl N m 1 N N m
12 dvdsfac m N m m N !
13 9 11 12 syl2an2 N m 1 N m N !
14 13 ralrimiva N m 1 N m N !
15 8 14 jca N N ! m 1 N m N !
16 lcmfledvds 1 N 1 N Fin 0 1 N N ! m 1 N m N ! lcm _ 1 N N !
17 6 15 16 sylc N lcm _ 1 N N !