Metamath Proof Explorer


Theorem lcmfn0cl

Description: Closure of the _lcm function. (Contributed by AV, 21-Aug-2020)

Ref Expression
Assertion lcmfn0cl Z Z Fin 0 Z lcm _ Z

Proof

Step Hyp Ref Expression
1 ssrab2 n | m Z m n
2 lcmfcllem Z Z Fin 0 Z lcm _ Z n | m Z m n
3 1 2 sselid Z Z Fin 0 Z lcm _ Z