Metamath Proof Explorer


Theorem lcmfn0val

Description: The value of the _lcm function for a set without 0. (Contributed by AV, 21-Aug-2020) (Revised by AV, 16-Sep-2020)

Ref Expression
Assertion lcmfn0val Z Z Fin 0 Z lcm _ Z = sup n | m Z m n <

Proof

Step Hyp Ref Expression
1 lcmfval Z Z Fin lcm _ Z = if 0 Z 0 sup n | m Z m n <
2 1 3adant3 Z Z Fin 0 Z lcm _ Z = if 0 Z 0 sup n | m Z m n <
3 df-nel 0 Z ¬ 0 Z
4 iffalse ¬ 0 Z if 0 Z 0 sup n | m Z m n < = sup n | m Z m n <
5 3 4 sylbi 0 Z if 0 Z 0 sup n | m Z m n < = sup n | m Z m n <
6 5 3ad2ant3 Z Z Fin 0 Z if 0 Z 0 sup n | m Z m n < = sup n | m Z m n <
7 2 6 eqtrd Z Z Fin 0 Z lcm _ Z = sup n | m Z m n <