Metamath Proof Explorer


Theorem lcmfnncl

Description: Closure of the _lcm function. (Contributed by AV, 20-Apr-2020)

Ref Expression
Assertion lcmfnncl Z Z Fin lcm _ Z

Proof

Step Hyp Ref Expression
1 id Z Z
2 nnssz
3 1 2 sstrdi Z Z
4 3 adantr Z Z Fin Z
5 simpr Z Z Fin Z Fin
6 0nnn ¬ 0
7 ssel Z 0 Z 0
8 6 7 mtoi Z ¬ 0 Z
9 df-nel 0 Z ¬ 0 Z
10 8 9 sylibr Z 0 Z
11 10 adantr Z Z Fin 0 Z
12 lcmfn0cl Z Z Fin 0 Z lcm _ Z
13 4 5 11 12 syl3anc Z Z Fin lcm _ Z