Database
ELEMENTARY NUMBER THEORY
Elementary properties of divisibility
The least common multiple
lcmfnncl
Next ⟩
lcmfeq0b
Metamath Proof Explorer
Ascii
Unicode
Theorem
lcmfnncl
Description:
Closure of the
_lcm
function.
(Contributed by
AV
, 20-Apr-2020)
Ref
Expression
Assertion
lcmfnncl
⊢
Z
⊆
ℕ
∧
Z
∈
Fin
→
lcm
_
⁡
Z
∈
ℕ
Proof
Step
Hyp
Ref
Expression
1
id
⊢
Z
⊆
ℕ
→
Z
⊆
ℕ
2
nnssz
⊢
ℕ
⊆
ℤ
3
1
2
sstrdi
⊢
Z
⊆
ℕ
→
Z
⊆
ℤ
4
3
adantr
⊢
Z
⊆
ℕ
∧
Z
∈
Fin
→
Z
⊆
ℤ
5
simpr
⊢
Z
⊆
ℕ
∧
Z
∈
Fin
→
Z
∈
Fin
6
0nnn
⊢
¬
0
∈
ℕ
7
ssel
⊢
Z
⊆
ℕ
→
0
∈
Z
→
0
∈
ℕ
8
6
7
mtoi
⊢
Z
⊆
ℕ
→
¬
0
∈
Z
9
df-nel
⊢
0
∉
Z
↔
¬
0
∈
Z
10
8
9
sylibr
⊢
Z
⊆
ℕ
→
0
∉
Z
11
10
adantr
⊢
Z
⊆
ℕ
∧
Z
∈
Fin
→
0
∉
Z
12
lcmfn0cl
⊢
Z
⊆
ℤ
∧
Z
∈
Fin
∧
0
∉
Z
→
lcm
_
⁡
Z
∈
ℕ
13
4
5
11
12
syl3anc
⊢
Z
⊆
ℕ
∧
Z
∈
Fin
→
lcm
_
⁡
Z
∈
ℕ