Metamath Proof Explorer


Theorem lcmfnnval

Description: The value of the _lcm function for a subset of the positive integers. (Contributed by AV, 21-Aug-2020) (Revised by AV, 16-Sep-2020)

Ref Expression
Assertion lcmfnnval Z Z Fin lcm _ Z = sup n | m Z m n <

Proof

Step Hyp Ref Expression
1 id Z Z
2 nnssz
3 1 2 sstrdi Z Z
4 3 adantr Z Z Fin Z
5 simpr Z Z Fin Z Fin
6 0nnn ¬ 0
7 6 nelir 0
8 ssel Z 0 Z 0
9 8 nelcon3d Z 0 0 Z
10 7 9 mpi Z 0 Z
11 10 adantr Z Z Fin 0 Z
12 lcmfn0val Z Z Fin 0 Z lcm _ Z = sup n | m Z m n <
13 4 5 11 12 syl3anc Z Z Fin lcm _ Z = sup n | m Z m n <