Metamath Proof Explorer


Theorem lcmfpr

Description: The value of the _lcm function for an unordered pair is the value of the lcm operator for both elements. (Contributed by AV, 22-Aug-2020) (Proof shortened by AV, 16-Sep-2020)

Ref Expression
Assertion lcmfpr M N lcm _ M N = M lcm N

Proof

Step Hyp Ref Expression
1 c0ex 0 V
2 1 elpr 0 M N 0 = M 0 = N
3 eqcom 0 = M M = 0
4 eqcom 0 = N N = 0
5 3 4 orbi12i 0 = M 0 = N M = 0 N = 0
6 2 5 bitri 0 M N M = 0 N = 0
7 6 a1i M N 0 M N M = 0 N = 0
8 breq1 m = M m n M n
9 breq1 m = N m n N n
10 8 9 ralprg M N m M N m n M n N n
11 10 rabbidv M N n | m M N m n = n | M n N n
12 11 infeq1d M N sup n | m M N m n < = sup n | M n N n <
13 7 12 ifbieq2d M N if 0 M N 0 sup n | m M N m n < = if M = 0 N = 0 0 sup n | M n N n <
14 prssi M N M N
15 prfi M N Fin
16 lcmfval M N M N Fin lcm _ M N = if 0 M N 0 sup n | m M N m n <
17 14 15 16 sylancl M N lcm _ M N = if 0 M N 0 sup n | m M N m n <
18 lcmval M N M lcm N = if M = 0 N = 0 0 sup n | M n N n <
19 13 17 18 3eqtr4d M N lcm _ M N = M lcm N