Metamath Proof Explorer


Theorem lcmfunsn

Description: The _lcm function for a union of a set of integer and a singleton. (Contributed by AV, 26-Aug-2020)

Ref Expression
Assertion lcmfunsn Y Y Fin N lcm _ Y N = lcm _ Y lcm N

Proof

Step Hyp Ref Expression
1 lcmfunsnlem Y Y Fin k m Y m k lcm _ Y k n lcm _ Y n = lcm _ Y lcm n
2 sneq n = N n = N
3 2 uneq2d n = N Y n = Y N
4 3 fveq2d n = N lcm _ Y n = lcm _ Y N
5 oveq2 n = N lcm _ Y lcm n = lcm _ Y lcm N
6 4 5 eqeq12d n = N lcm _ Y n = lcm _ Y lcm n lcm _ Y N = lcm _ Y lcm N
7 6 rspccv n lcm _ Y n = lcm _ Y lcm n N lcm _ Y N = lcm _ Y lcm N
8 1 7 simpl2im Y Y Fin N lcm _ Y N = lcm _ Y lcm N
9 8 3impia Y Y Fin N lcm _ Y N = lcm _ Y lcm N