Step |
Hyp |
Ref |
Expression |
1 |
|
sseq1 |
|
2 |
|
raleq |
|
3 |
|
fveq2 |
|
4 |
3
|
breq1d |
|
5 |
2 4
|
imbi12d |
|
6 |
5
|
ralbidv |
|
7 |
|
uneq1 |
|
8 |
7
|
fveq2d |
|
9 |
3
|
oveq1d |
|
10 |
8 9
|
eqeq12d |
|
11 |
10
|
ralbidv |
|
12 |
6 11
|
anbi12d |
|
13 |
1 12
|
imbi12d |
|
14 |
|
sseq1 |
|
15 |
|
raleq |
|
16 |
|
fveq2 |
|
17 |
16
|
breq1d |
|
18 |
15 17
|
imbi12d |
|
19 |
18
|
ralbidv |
|
20 |
|
uneq1 |
|
21 |
20
|
fveq2d |
|
22 |
16
|
oveq1d |
|
23 |
21 22
|
eqeq12d |
|
24 |
23
|
ralbidv |
|
25 |
19 24
|
anbi12d |
|
26 |
14 25
|
imbi12d |
|
27 |
|
sseq1 |
|
28 |
|
raleq |
|
29 |
|
fveq2 |
|
30 |
29
|
breq1d |
|
31 |
28 30
|
imbi12d |
|
32 |
31
|
ralbidv |
|
33 |
|
uneq1 |
|
34 |
33
|
fveq2d |
|
35 |
29
|
oveq1d |
|
36 |
34 35
|
eqeq12d |
|
37 |
36
|
ralbidv |
|
38 |
32 37
|
anbi12d |
|
39 |
27 38
|
imbi12d |
|
40 |
|
sseq1 |
|
41 |
|
raleq |
|
42 |
|
fveq2 |
|
43 |
42
|
breq1d |
|
44 |
41 43
|
imbi12d |
|
45 |
44
|
ralbidv |
|
46 |
|
uneq1 |
|
47 |
46
|
fveq2d |
|
48 |
42
|
oveq1d |
|
49 |
47 48
|
eqeq12d |
|
50 |
49
|
ralbidv |
|
51 |
45 50
|
anbi12d |
|
52 |
40 51
|
imbi12d |
|
53 |
|
lcmf0 |
|
54 |
|
1dvds |
|
55 |
53 54
|
eqbrtrid |
|
56 |
55
|
a1d |
|
57 |
56
|
adantl |
|
58 |
57
|
ralrimiva |
|
59 |
|
uncom |
|
60 |
|
un0 |
|
61 |
59 60
|
eqtri |
|
62 |
61
|
a1i |
|
63 |
62
|
fveq2d |
|
64 |
|
lcmfsn |
|
65 |
53
|
a1i |
|
66 |
65
|
oveq1d |
|
67 |
|
1z |
|
68 |
|
lcmcom |
|
69 |
67 68
|
mpan |
|
70 |
|
lcm1 |
|
71 |
66 69 70
|
3eqtrrd |
|
72 |
63 64 71
|
3eqtrd |
|
73 |
72
|
adantl |
|
74 |
73
|
ralrimiva |
|
75 |
58 74
|
jca |
|
76 |
|
unss |
|
77 |
|
simpl |
|
78 |
76 77
|
sylbir |
|
79 |
78
|
adantl |
|
80 |
|
vex |
|
81 |
80
|
snss |
|
82 |
|
lcmfunsnlem1 |
|
83 |
|
lcmfunsnlem2 |
|
84 |
82 83
|
jca |
|
85 |
84
|
3exp1 |
|
86 |
81 85
|
sylbir |
|
87 |
86
|
impcom |
|
88 |
76 87
|
sylbir |
|
89 |
88
|
impcom |
|
90 |
79 89
|
embantd |
|
91 |
90
|
ex |
|
92 |
91
|
com23 |
|
93 |
13 26 39 52 75 92
|
findcard2 |
|
94 |
93
|
impcom |
|