Step |
Hyp |
Ref |
Expression |
1 |
|
gcdcl |
|
2 |
1
|
nn0cnd |
|
3 |
2
|
mul02d |
|
4 |
|
0z |
|
5 |
|
lcmcom |
|
6 |
4 5
|
mpan2 |
|
7 |
|
lcm0val |
|
8 |
6 7
|
eqtr3d |
|
9 |
8
|
adantl |
|
10 |
9
|
oveq1d |
|
11 |
|
zcn |
|
12 |
11
|
adantl |
|
13 |
12
|
mul02d |
|
14 |
13
|
abs00bd |
|
15 |
3 10 14
|
3eqtr4d |
|
16 |
15
|
adantr |
|
17 |
|
simpr |
|
18 |
17
|
oveq1d |
|
19 |
18
|
oveq1d |
|
20 |
17
|
oveq1d |
|
21 |
20
|
fveq2d |
|
22 |
16 19 21
|
3eqtr4d |
|
23 |
|
lcm0val |
|
24 |
23
|
adantr |
|
25 |
24
|
oveq1d |
|
26 |
|
zcn |
|
27 |
26
|
adantr |
|
28 |
27
|
mul01d |
|
29 |
28
|
abs00bd |
|
30 |
3 25 29
|
3eqtr4d |
|
31 |
30
|
adantr |
|
32 |
|
simpr |
|
33 |
32
|
oveq2d |
|
34 |
33
|
oveq1d |
|
35 |
32
|
oveq2d |
|
36 |
35
|
fveq2d |
|
37 |
31 34 36
|
3eqtr4d |
|
38 |
22 37
|
jaodan |
|
39 |
|
neanior |
|
40 |
|
nnabscl |
|
41 |
|
nnabscl |
|
42 |
40 41
|
anim12i |
|
43 |
42
|
an4s |
|
44 |
39 43
|
sylan2br |
|
45 |
|
lcmgcdlem |
|
46 |
45
|
simpld |
|
47 |
44 46
|
syl |
|
48 |
|
lcmabs |
|
49 |
|
gcdabs |
|
50 |
48 49
|
oveq12d |
|
51 |
50
|
adantr |
|
52 |
|
absidm |
|
53 |
|
absidm |
|
54 |
52 53
|
oveqan12d |
|
55 |
26 11 54
|
syl2an |
|
56 |
|
nn0abscl |
|
57 |
56
|
nn0cnd |
|
58 |
57
|
adantr |
|
59 |
|
nn0abscl |
|
60 |
59
|
nn0cnd |
|
61 |
60
|
adantl |
|
62 |
58 61
|
absmuld |
|
63 |
27 12
|
absmuld |
|
64 |
55 62 63
|
3eqtr4d |
|
65 |
64
|
adantr |
|
66 |
47 51 65
|
3eqtr3d |
|
67 |
38 66
|
pm2.61dan |
|