Metamath Proof Explorer


Theorem lcmid

Description: The lcm of an integer and itself is its absolute value. (Contributed by Steve Rodriguez, 20-Jan-2020)

Ref Expression
Assertion lcmid MMlcmM=M

Proof

Step Hyp Ref Expression
1 oveq2 M=0MlcmM=Mlcm0
2 fveq2 M=0M=0
3 abs0 0=0
4 2 3 eqtrdi M=0M=0
5 1 4 eqeq12d M=0MlcmM=MMlcm0=0
6 lcmcl MMMlcmM0
7 6 nn0cnd MMMlcmM
8 7 anidms MMlcmM
9 8 adantr MM0MlcmM
10 zabscl MM
11 10 zcnd MM
12 11 adantr MM0M
13 zcn MM
14 13 adantr MM0M
15 simpr MM0M0
16 14 15 absne0d MM0M0
17 lcmgcd MMMlcmMMgcdM= M M
18 17 anidms MMlcmMMgcdM= M M
19 gcdid MMgcdM=M
20 19 oveq2d MMlcmMMgcdM=MlcmMM
21 13 13 absmuld M M M=MM
22 18 20 21 3eqtr3d MMlcmMM=MM
23 22 adantr MM0MlcmMM=MM
24 9 12 12 16 23 mulcan2ad MM0MlcmM=M
25 lcm0val MMlcm0=0
26 5 24 25 pm2.61ne MMlcmM=M