Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
|
fveq2 |
|
3 |
|
abs0 |
|
4 |
2 3
|
eqtrdi |
|
5 |
1 4
|
eqeq12d |
|
6 |
|
lcmcl |
|
7 |
6
|
nn0cnd |
|
8 |
7
|
anidms |
|
9 |
8
|
adantr |
|
10 |
|
zabscl |
|
11 |
10
|
zcnd |
|
12 |
11
|
adantr |
|
13 |
|
zcn |
|
14 |
13
|
adantr |
|
15 |
|
simpr |
|
16 |
14 15
|
absne0d |
|
17 |
|
lcmgcd |
|
18 |
17
|
anidms |
|
19 |
|
gcdid |
|
20 |
19
|
oveq2d |
|
21 |
13 13
|
absmuld |
|
22 |
18 20 21
|
3eqtr3d |
|
23 |
22
|
adantr |
|
24 |
9 12 12 16 23
|
mulcan2ad |
|
25 |
|
lcm0val |
|
26 |
5 24 25
|
pm2.61ne |
|