Metamath Proof Explorer


Theorem lcmid

Description: The lcm of an integer and itself is its absolute value. (Contributed by Steve Rodriguez, 20-Jan-2020)

Ref Expression
Assertion lcmid M M lcm M = M

Proof

Step Hyp Ref Expression
1 oveq2 M = 0 M lcm M = M lcm 0
2 fveq2 M = 0 M = 0
3 abs0 0 = 0
4 2 3 eqtrdi M = 0 M = 0
5 1 4 eqeq12d M = 0 M lcm M = M M lcm 0 = 0
6 lcmcl M M M lcm M 0
7 6 nn0cnd M M M lcm M
8 7 anidms M M lcm M
9 8 adantr M M 0 M lcm M
10 zabscl M M
11 10 zcnd M M
12 11 adantr M M 0 M
13 zcn M M
14 13 adantr M M 0 M
15 simpr M M 0 M 0
16 14 15 absne0d M M 0 M 0
17 lcmgcd M M M lcm M M gcd M = M M
18 17 anidms M M lcm M M gcd M = M M
19 gcdid M M gcd M = M
20 19 oveq2d M M lcm M M gcd M = M lcm M M
21 13 13 absmuld M M M = M M
22 18 20 21 3eqtr3d M M lcm M M = M M
23 22 adantr M M 0 M lcm M M = M M
24 9 12 12 16 23 mulcan2ad M M 0 M lcm M = M
25 lcm0val M M lcm 0 = 0
26 5 24 25 pm2.61ne M M lcm M = M