Metamath Proof Explorer


Theorem lcmledvds

Description: A positive integer which both operands of the lcm operator divide bounds it. (Contributed by Steve Rodriguez, 20-Jan-2020) (Proof shortened by AV, 16-Sep-2020)

Ref Expression
Assertion lcmledvds K M N ¬ M = 0 N = 0 M K N K M lcm N K

Proof

Step Hyp Ref Expression
1 lcmn0val M N ¬ M = 0 N = 0 M lcm N = sup n | M n N n <
2 1 3adantl1 K M N ¬ M = 0 N = 0 M lcm N = sup n | M n N n <
3 2 adantr K M N ¬ M = 0 N = 0 M K N K M lcm N = sup n | M n N n <
4 breq2 n = K M n M K
5 breq2 n = K N n N K
6 4 5 anbi12d n = K M n N n M K N K
7 6 elrab K n | M n N n K M K N K
8 ssrab2 n | M n N n
9 nnuz = 1
10 8 9 sseqtri n | M n N n 1
11 infssuzle n | M n N n 1 K n | M n N n sup n | M n N n < K
12 10 11 mpan K n | M n N n sup n | M n N n < K
13 7 12 sylbir K M K N K sup n | M n N n < K
14 13 ex K M K N K sup n | M n N n < K
15 14 3ad2ant1 K M N M K N K sup n | M n N n < K
16 15 adantr K M N ¬ M = 0 N = 0 M K N K sup n | M n N n < K
17 16 imp K M N ¬ M = 0 N = 0 M K N K sup n | M n N n < K
18 3 17 eqbrtrd K M N ¬ M = 0 N = 0 M K N K M lcm N K
19 18 ex K M N ¬ M = 0 N = 0 M K N K M lcm N K