Metamath Proof Explorer


Theorem lcmval

Description: Value of the lcm operator. ( M lcm N ) is the least common multiple of M and N . If either M or N is 0 , the result is defined conventionally as 0 . Contrast with df-gcd and gcdval . (Contributed by Steve Rodriguez, 20-Jan-2020) (Revised by AV, 16-Sep-2020)

Ref Expression
Assertion lcmval M N M lcm N = if M = 0 N = 0 0 sup n | M n N n <

Proof

Step Hyp Ref Expression
1 eqeq1 x = M x = 0 M = 0
2 1 orbi1d x = M x = 0 y = 0 M = 0 y = 0
3 breq1 x = M x n M n
4 3 anbi1d x = M x n y n M n y n
5 4 rabbidv x = M n | x n y n = n | M n y n
6 5 infeq1d x = M sup n | x n y n < = sup n | M n y n <
7 2 6 ifbieq2d x = M if x = 0 y = 0 0 sup n | x n y n < = if M = 0 y = 0 0 sup n | M n y n <
8 eqeq1 y = N y = 0 N = 0
9 8 orbi2d y = N M = 0 y = 0 M = 0 N = 0
10 breq1 y = N y n N n
11 10 anbi2d y = N M n y n M n N n
12 11 rabbidv y = N n | M n y n = n | M n N n
13 12 infeq1d y = N sup n | M n y n < = sup n | M n N n <
14 9 13 ifbieq2d y = N if M = 0 y = 0 0 sup n | M n y n < = if M = 0 N = 0 0 sup n | M n N n <
15 df-lcm lcm = x , y if x = 0 y = 0 0 sup n | x n y n <
16 c0ex 0 V
17 ltso < Or
18 17 infex sup n | M n N n < V
19 16 18 ifex if M = 0 N = 0 0 sup n | M n N n < V
20 7 14 15 19 ovmpo M N M lcm N = if M = 0 N = 0 0 sup n | M n N n <