Metamath Proof Explorer


Theorem lcomf

Description: A linear-combination sum is a function. (Contributed by Stefan O'Rear, 28-Feb-2015)

Ref Expression
Hypotheses lcomf.f F = Scalar W
lcomf.k K = Base F
lcomf.s · ˙ = W
lcomf.b B = Base W
lcomf.w φ W LMod
lcomf.g φ G : I K
lcomf.h φ H : I B
lcomf.i φ I V
Assertion lcomf φ G · ˙ f H : I B

Proof

Step Hyp Ref Expression
1 lcomf.f F = Scalar W
2 lcomf.k K = Base F
3 lcomf.s · ˙ = W
4 lcomf.b B = Base W
5 lcomf.w φ W LMod
6 lcomf.g φ G : I K
7 lcomf.h φ H : I B
8 lcomf.i φ I V
9 4 1 3 2 lmodvscl W LMod x K y B x · ˙ y B
10 9 3expb W LMod x K y B x · ˙ y B
11 5 10 sylan φ x K y B x · ˙ y B
12 inidm I I = I
13 11 6 7 8 8 12 off φ G · ˙ f H : I B