Database
BASIC ALGEBRAIC STRUCTURES
Left modules
Definition and basic properties
lcomf
Next ⟩
lcomfsupp
Metamath Proof Explorer
Ascii
Unicode
Theorem
lcomf
Description:
A linear-combination sum is a function.
(Contributed by
Stefan O'Rear
, 28-Feb-2015)
Ref
Expression
Hypotheses
lcomf.f
⊢
F
=
Scalar
⁡
W
lcomf.k
⊢
K
=
Base
F
lcomf.s
⊢
·
˙
=
⋅
W
lcomf.b
⊢
B
=
Base
W
lcomf.w
⊢
φ
→
W
∈
LMod
lcomf.g
⊢
φ
→
G
:
I
⟶
K
lcomf.h
⊢
φ
→
H
:
I
⟶
B
lcomf.i
⊢
φ
→
I
∈
V
Assertion
lcomf
⊢
φ
→
G
·
˙
f
H
:
I
⟶
B
Proof
Step
Hyp
Ref
Expression
1
lcomf.f
⊢
F
=
Scalar
⁡
W
2
lcomf.k
⊢
K
=
Base
F
3
lcomf.s
⊢
·
˙
=
⋅
W
4
lcomf.b
⊢
B
=
Base
W
5
lcomf.w
⊢
φ
→
W
∈
LMod
6
lcomf.g
⊢
φ
→
G
:
I
⟶
K
7
lcomf.h
⊢
φ
→
H
:
I
⟶
B
8
lcomf.i
⊢
φ
→
I
∈
V
9
4
1
3
2
lmodvscl
⊢
W
∈
LMod
∧
x
∈
K
∧
y
∈
B
→
x
·
˙
y
∈
B
10
9
3expb
⊢
W
∈
LMod
∧
x
∈
K
∧
y
∈
B
→
x
·
˙
y
∈
B
11
5
10
sylan
⊢
φ
∧
x
∈
K
∧
y
∈
B
→
x
·
˙
y
∈
B
12
inidm
⊢
I
∩
I
=
I
13
11
6
7
8
8
12
off
⊢
φ
→
G
·
˙
f
H
:
I
⟶
B