Metamath Proof Explorer


Theorem lcv1

Description: Covering property of a subspace plus an atom. ( chcv1 analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lcv1.s S = LSubSp W
lcv1.p ˙ = LSSum W
lcv1.a A = LSAtoms W
lcv1.c C = L W
lcv1.w φ W LVec
lcv1.u φ U S
lcv1.q φ Q A
Assertion lcv1 φ ¬ Q U U C U ˙ Q

Proof

Step Hyp Ref Expression
1 lcv1.s S = LSubSp W
2 lcv1.p ˙ = LSSum W
3 lcv1.a A = LSAtoms W
4 lcv1.c C = L W
5 lcv1.w φ W LVec
6 lcv1.u φ U S
7 lcv1.q φ Q A
8 eqid Base W = Base W
9 eqid LSpan W = LSpan W
10 eqid 0 W = 0 W
11 8 9 10 3 islsat W LVec Q A x Base W 0 W Q = LSpan W x
12 5 11 syl φ Q A x Base W 0 W Q = LSpan W x
13 7 12 mpbid φ x Base W 0 W Q = LSpan W x
14 13 adantr φ ¬ Q U x Base W 0 W Q = LSpan W x
15 5 adantr φ ¬ Q U W LVec
16 15 3ad2ant1 φ ¬ Q U x Base W 0 W Q = LSpan W x W LVec
17 6 adantr φ ¬ Q U U S
18 17 3ad2ant1 φ ¬ Q U x Base W 0 W Q = LSpan W x U S
19 eldifi x Base W 0 W x Base W
20 19 3ad2ant2 φ ¬ Q U x Base W 0 W Q = LSpan W x x Base W
21 simp1r φ ¬ Q U x Base W 0 W Q = LSpan W x ¬ Q U
22 simp3 φ ¬ Q U x Base W 0 W Q = LSpan W x Q = LSpan W x
23 22 sseq1d φ ¬ Q U x Base W 0 W Q = LSpan W x Q U LSpan W x U
24 21 23 mtbid φ ¬ Q U x Base W 0 W Q = LSpan W x ¬ LSpan W x U
25 8 1 9 2 4 16 18 20 24 lsmcv2 φ ¬ Q U x Base W 0 W Q = LSpan W x U C U ˙ LSpan W x
26 22 oveq2d φ ¬ Q U x Base W 0 W Q = LSpan W x U ˙ Q = U ˙ LSpan W x
27 25 26 breqtrrd φ ¬ Q U x Base W 0 W Q = LSpan W x U C U ˙ Q
28 27 rexlimdv3a φ ¬ Q U x Base W 0 W Q = LSpan W x U C U ˙ Q
29 14 28 mpd φ ¬ Q U U C U ˙ Q
30 5 adantr φ U C U ˙ Q W LVec
31 6 adantr φ U C U ˙ Q U S
32 lveclmod W LVec W LMod
33 5 32 syl φ W LMod
34 1 3 33 7 lsatlssel φ Q S
35 1 2 lsmcl W LMod U S Q S U ˙ Q S
36 33 6 34 35 syl3anc φ U ˙ Q S
37 36 adantr φ U C U ˙ Q U ˙ Q S
38 simpr φ U C U ˙ Q U C U ˙ Q
39 1 4 30 31 37 38 lcvpss φ U C U ˙ Q U U ˙ Q
40 1 lsssssubg W LMod S SubGrp W
41 33 40 syl φ S SubGrp W
42 41 6 sseldd φ U SubGrp W
43 41 34 sseldd φ Q SubGrp W
44 2 42 43 lssnle φ ¬ Q U U U ˙ Q
45 44 adantr φ U C U ˙ Q ¬ Q U U U ˙ Q
46 39 45 mpbird φ U C U ˙ Q ¬ Q U
47 29 46 impbida φ ¬ Q U U C U ˙ Q